Χάρης Βάρβογλης Τμήμα Φυσικής Α.Π.Θ. ΧΑΟΣ Χάρης Βάρβογλης Τμήμα Φυσικής Α.Π.Θ.
Μηχανοκρατία Λαπλάς για Πιθανότητες Λαπλάς για Ουράνια Μηχανική και Θεό (Ναπολέων) Ελευθερία βούλησης των ανθρώπων
Πουανκαρέ (1854-1912) Διαγωνισμός βασιλιά Όσκαρ ΙΙ Σουηδίας (1887) Ευστάθεια Ηλιακού Συστήματος (α) απόδειξη ευστάθειας (β) απόδειξη αστάθειας (!) Δημοσίευση – ανάκληση της εργασίας Ποιοτική απόδειξη Ποσοτική σημασία; Διεθνής επιστημονική κοινότητα: καμιά σημασία!
Η πολυπλοκότητα του Poincaré "Ces intersections forment une sorte de treillis, de tissu, δe réseau à maille infiniment serrées; chacune de ces courbes ne doit jamais se recouper elle-même, mais elle doit se replier elle-même d'une manière très complexe pour venir couper une infinité de fois toutes les mailles du réseau.» On sera frappé par la complexité de cette figure, que je ne cherche même pas à tracer."
Ηλεκτρονικοί υπολογιστές - Λόρεντς Απλούστερη μοντέλο ατμοσφαιρικής κυκλοφορίας (3 διαφορικές εξισώσεις 1ης τάξης με 3 ανεξάρτητες μεταβλητές) Διακοπή-συνέχιση αριθμητικής ολοκλήρωσης (περιορισμός σημαντικών ψηφίων) Φαινόμενο πεταλούδας
Μέθοδος διαδοχικών προσεγγίσεων Παράδειγμα Ουράνιας Μηχανικής (πρόβλημα 2 σωμάτων – πρόβλημα 3 σωμάτων – πρόβλημα Ν σωμάτων) Χαρακτήρας τάξης και χάους τροχιών Περιοχές τάξης και περιοχές χάους Εφαρμογή στο Ηλιακό Σύστημα (π.χ. διάκενα Kirkwood)
Διάκενα Kirkwood
Χαρακτηριστικά Χάους Πολυπλοκότητα (γεωμετρικό σχήμα Poincaré) Ευαισθησία στις αρχικές συνθήκες (εκθέτης Lyapunov) Ακρίβεια αρχικών συνθηκών – μήκος χρονικού διαστήματος λύσης Σχέση με Θερμοδυναμική – 2ο αξίωμα Μέχρι σήμερα αποτελέσματα (Yakov Sinai – τέλειο αέριο) Ανάγκη μηδενισμού της περιοχής τάξης Πραγματική δυναμικά συστήματα;