Μπέρναρντ Ρίμαν ΜΑΘΗΜΑΤΙΚΑ
Ο Γκεόργκ Φρίντριχ Μπέρναρντ Ρίμαν ή Ρήμαν (Georg Friedrich Bernhard Riemann, 17 Σεπτεμβρίου 1826 – 20 Ιουλίου 1866) ήταν Γερμανός μαθηματικός που συνεισέφερε σημαντικά στη Μαθηματική Ανάλυση, την Τοπολογία, την Αναλυτική Θεωρία των αριθμώνκαι τη Διαφορική Γεωμετρία, προωθώντας τη μη ευκλείδεια Γεωμετρία και ανοίγοντας έτσι τον δρόμο μεταξύ άλλων και για τη θεμελίωση αργότερα της Γενικής Θεωρίας της Σχετικότητας. Κατά τον D. Struik «με τον Ρίμαν φτάνουμε στον άνθρωπο που επηρέασε περισσότερο από κάθε άλλον την πορεία των σύγχρονων Μαθηματικών». Μπέρναρντ Ρίμαν
Γενική θεωρία της Σχετικότητας Η Γενική θεωρία της Σχετικότητας είναι η θεωρία βαρύτητας που προτάθηκε από τον Άλμπερτ Αϊνστάιν, και η οποία περιγράφει την βαρυτική δύναμη μέσω των καμπυλώσεων τουχωρόχρονου παρουσία μάζας. To δισδιάστατο ανάλογο παραμόρφωσης του χωρόχρονου. Η παρουσία μάζας αλλάζει τη γεωμετρία του χωρόχρονου, η οποία ερμηνεύεται ως βαρύτητα. Βασική αρχή της θεωρίας είναι η ισοδυναμία των επιταχυνόμενων συστημάτων αναφοράς με συστήματα που ευρίσκονται εντός βαρυτικού πεδίου. Τον Νοέμβριο του 1915, ο Αϊνστάιν παρουσίασε τη θεωρία της Γενικής Σχετικότητας σε μια σειρά διαλέξεων ενώπιον της Πρωσσικής Ακαδημίας Επιστημών. Η τελευταία διάλεξη προκάλεσε αναστάτωση στον επιστημονικό κόσμο, καθώς ο Αϊνστάιν παρουσίασε μια θεωρία που αντικαθιστούσε την εξήγηση του Ισαάκ Νεύτωνα για τη βαρύτητα. Σύμφωνα με τη θεωρία αυτή, η βαρύτητα δεν θεωρείται ως το αποτέλεσμα μιας δύναμης, αλλά οφείλεται στην καμπύλωση του χωρόχρονου, η οποία προκαλείται από την περιεχόμενη στον χωρόχρονο μάζα και ενέργεια. Γενική θεωρία της Σχετικότητας
Το έργο του Ρίμαν άνοιξε νέες ερευνητικές περιοχές συνδυάζοντας την Ανάλυση με τη Γεωμετρία. Εκτός από τη Ριμάνεια Γεωμετρία, η θεωρία των επιφανειών Ρίμαν αναπτύχθηκε παραπέρα από τους Φέλιξ Κλάιν και Άντολφ Χούρεβιτς και σήμερα συνιστά ένα από τα θεμέλια της Τοπολογίας, ενώ εφαρμόζεται ακόμα με νέους τρόπους στη Μαθηματική Φυσική. Ο Ρίμαν προσέφερε πολλά στην Πραγματική Ανάλυση: όρισε το ολοκλήρωμα Ρίμαν με τη βοήθεια των αθροισμάτων Ρίμαν, ανέπτυξε μια θεωρία για τις τριγωνομετρικές σειρές που δεν είναι σειρές Φουριέ — ένα πρώτο βήμα για μια θεωρία των γενικευμένων συναρτήσεων — και μελέτησε το διαφορικό ολοκλήρωμα Ρίμαν- Λιουβίλ. Πολύ γνωστές είναι και κάποιες συνεισφορές του Ρίμαν στη σύγχρονη Αναλυτική Θεωρία των αριθμών. Σε μία και μόνη σύντομη δημοσίευση (τη μοναδική του επί της Αριθμοθεωρίας), εισήγαγε τη Συνάρτηση ζ του Ρίμαν και έδειξε τη σημασία της για την κατανόηση της κατανομής των πρώτων αριθμών. Διετύπωσε μια σειρά από εικασίες σχετικές με ιδιότητες της συναρτήσεως ζ, μία από τις οποίες είναι η περιβοήτη Υπόθεση του Ρίμαν. Ο Ρίμαν εφάρμοσε την Αρχή του Dirichlet από τον Λογισμό των μεταβολών με σπουδαία αποτελέσματα. Η εργασία του στη μονοδρομία και στην υπεργεωμετρική συνάρτηση στουςμιγαδικούς έκανε μεγάλη εντύπωση και καθιέρωσε μια βασική μέθοδο εργασίας με συναρτήσεις «λαβαίνοντας υπόψη μόνο τις ανωμαλίες τους». Αριθμοί
μέθοδο των ελάχιστων τετραγώνων Ο Ρίμαν γεννήθηκε στο Μπρέζελεντς (Breselenz), ένα χωριό κοντά στο Ντάνενμπεργκ, στο κρατίδιο Ανόβερο της Γερμανίας. Ο πατέρας του, ο Friedrich Bernhard Riemann, ήταν ένας φτωχός Λουθηρανός πάστορας στο χωριό και είχε πολεμήσει στουςΝαπολεόντειους Πολέμους. Η μητέρα του πέθανε πριν μεγαλώσουν τα παιδιά της. Ο Ρίμαν ήταν το δεύτερο από 6 παιδιά, ντροπαλός και με νευρικές καταρρεύσεις. Ωστόσο, έδειξε ασυνήθιστες μαθηματικές ικανότητες, όπως αφάνταστη ταχύτητα στους υπολογισμούς, από μικρή ηλικία, αλλά υπέφερε από δειλία και φόβο να μιλά δημόσια. Στο σχολείο ο Ρίμαν μελέτησε πολύ τη Βίβλο αλλά το μυαλό του συχνά γυρνούσε στα Μαθηματικά. Προσπάθησε ακόμα και να αποδείξει μαθηματικά την ορθότητα της Γενέσεως. Οι δάσκαλοί του έμεναν κατάπληκτοι από την ευφυΐα του και την ικανότητά του να εκτελεί εξαιρετικά πολύπλοκες μαθηματικές πράξεις. Συχνά ξεπερνούσε τις γνώσεις του δασκάλου του. Το 1840 ο Ρίμαν πήγε στο Ανόβερο να ζήσει με τη γιαγιά του, ώστε να σπουδάσει παραπέρα. Μετά τον θάνατό της το 1842, γράφτηκε στο Johanneum («Ιωάννειο Λύκειο») στο Λύνεμπουργκ. Το 1846, σε ηλικία 19 ετών, άρχισε να μελετά Φιλολογία και Θεολογία ώστε να γίνει ιερέας και να βοηθήσει έτσι οικονομικά την οικογένειά του. Αλλά τον επόμενο χρόνο, ο πατέρας του, αφού κατόρθωσε να συγκεντρώσει με μεγάλες δυσκολίες αρκετά χρήματα για να τον στείλει στο πανεπιστήμιο, του επέτρεψε να αφήσει τη Θεολογία και να αρχίσει σπουδές στα Μαθηματικά. Τον έστειλε στο ονομαστό Πανεπιστήμιο του Γκέτινγκεν, όπου συνάντησε τον μεγάλο μαθηματικό Καρλ Φρίντριχ Γκάους και παρακολούθησε διαλέξεις του πάνω στη μέθοδο των ελάχιστων τετραγώνων. μέθοδο των ελάχιστων τετραγώνων
ΠΗΓΕΣ http://el.wikipedia.org/wiki/%CE%9C%CF%80%CE%AD%CF%81%CE%BD%CE%B1%CF%81%CE%BD%CF%84_%CE%A1%CE%AF%CE%BC%CE%B1%CE%BD http://www.easypedia.gr/el/articles/%CE%BC/%CF%80/%CE%AD/%CE%9C%CF%80%CE%AD%CF%81%CE%BD%CE%B1%CF%81%CE%BD%CF%84_%CE%A1%CE%AF%CE%BC%CE%B1%CE%BD_5cee.html http://simple.wikibooks.org/wiki/Numbers http://digitalschool.minedu.gov.gr/modules/ebook/show.php/DSGL-C100/493/3203,13013/ http://physicsgg.me/2011/05/05/h-%CE%B3%CE%B5%CE%BD%CE%B9%CE%BA%CE%AE-%CE%B8%CE%B5%CF%89%CF%81%CE%AF%CE%B1-%CF%84%CE%B7%CF%82-%CF%83%CF%87%CE%B5%CF%84%CE%B9%CE%BA%CF%8C%CF%84%CE%B7%CF%84%CE%B1%CF%82-%CF%84%CE%BF%CF%85-einstein/
Σας Ευχαριστώ ΤΜΗΜΑ Α1 ΟΝΟΜΑ ΕΛΕΝΑ ΔΡΙΜΑΡΟΠΟΥΛΟΥ ΥΠΕΥΘYΝΗ ΚΑΘΗΓΗΤΡΙΑ ΚΑ ΠΑΤΣΙΟΜΙΤΟΥ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΟΝΙΑ 2012-2013