Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Κίνηση φορτισμένου σωματιδίου σε ομογενές μαγνητικό πεδίο

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "Κίνηση φορτισμένου σωματιδίου σε ομογενές μαγνητικό πεδίο"— Μεταγράφημα παρουσίασης:

1 Κίνηση φορτισμένου σωματιδίου σε ομογενές μαγνητικό πεδίο
Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 1

2 Προαπαιτούμενες γνώσεις
Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 2

3 κατεύθυνσή της είναι προς το _ _ _ _ του κύκλου. και η
Όταν η διεύθυνση της ταχύτητας ενός σώματος είναι συνεχώς κάθετη στη διεύθυνση της συνισταμένης δύναμης που δρα σ’ αυτό και η δύναμη έχει σταθερό μέτρο, τότε το σώμα κάνει _ _ _ _ _ _ _ _ _ _ _ . κυκλική κίνηση ομαλή κεντρομόλος κατεύθυνσή της είναι προς το _ _ _ _ του κύκλου. και η Η δύναμη αυτή είναι η _ _ _ _ _ _ δύναμη κέντρο Το μέτρο της κεντρομόλου δύναμης είναι _ _ _ _ _ Η γραμμική ταχύτητα υ σε συνάρτηση με την περίοδο υπολογίζεται από τη σχέση Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 3

4 όπου θ η γωνία που σχηματίζουν η κατεύθυνση της _ _ _ _ _ _ ταχύτητας
Όταν ένα φορτισμένο σωματίδιο που έχει φορτίο εισέρχεται με ταχύτητα σε ομογενές μαγνητικό πεδίο έντασης δέχεται δύναμη _ _ _ _ _ _ _ _ Lorentz (Λόρεντζ), που έχει μέτρο _ _ _ _ _ _ _ _ _ όπου θ η γωνία που σχηματίζουν η κατεύθυνση της _ _ _ _ _ _ ταχύτητας με την κατεύθυνση της έντασης _ _ _ _ _ _ του μαγνητικού πεδίου. Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 4

5 Η δύναμη Lorentz έχει διεύθυνση _ _ _ _ κάθετη
η _ _ _ _ _ στο επίπεδο που ορίζουν ταχύτητα ένταση και η _ _ _ _ _. Η φορά της δύναμης Lorentz καθορίζεται από τον κανόνα _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ των τριών δακτύλων του δεξιού χεριού. Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 5

6 Κίνηση παράλληλα στις δυναμικές γραμμές
Στη συνέχεια θα μελετήσουμε 2 ειδικές περιπτώσεις κίνησης φορτισμένου σωματιδίου μέσα σε ομογενές μαγνητικό πεδίο. Κίνηση παράλληλα στις δυναμικές γραμμές και Κίνηση κάθετα στις δυναμικές γραμμές του πεδίου. Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 6

7 Α. Κίνηση παράλληλα στις δυναμικές γραμμές
q FL = 0 ημθ = 0 θ = 00 Το φορτισμένο σωματίδιο δεν δέχεται δύναμη από το πεδίο, συνεπώς συνεχίζει να κινείται με την ταχύτητα που είχε, δηλαδή κάνει _ _ _ _ _ _ _ _ κίνηση. ευθύγραμμη ομαλή Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 7

8 Β. Κίνηση κάθετα στις δυναμικές γραμμές
Η μοναδική δύναμη που δρα στο ηλεκτρόνιο είναι η από το πεδίο, που η διεύθυνσή της είναι _ _ _ _ στη διεύθυνση της ταχύτητας. e κάθετη e e θ = 900 ημθ = 1 Έτσι, το σωματίδιο κινείται με την επίδραση δύναμης σταθερού μέτρου, που είναι διαρκώς κάθετη στην ταχύτητά του. Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 8

9 κεντρομόλου ……………………… δύναμης, ομαλή κυκλική
e Γι’ αυτό η δύναμη Lorentz έχει τα χαρακτηριστικά κεντρομόλου ……………………… δύναμης, που αναγκάζει το φορτισμένο σωματίδιο να εκτελέσει ομαλή κυκλική …………… ……………. κίνηση. Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 9

10 Τα χαρακτηριστικά της κίνησης
(ακτίνα R κυκλικής τροχιάς, περίοδος Τ κυκλικής κίνησης) Εδώ μπορεί να γίνει επεξεργασία του φύλλου εργασίας που στηρίζεται στο αρχείο «Εκτροπή ηλεκτρονίου.ip», να συμπεράνουμε για την ακτίνα και την περίοδο και να επανέλθουμε στους αλγεβρικούς υπολογισμούς. Σύνδεση με το αρχείο «Εκτροπή ηλεκτρονίου.ip» Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 10

11 Α. Υπολογισμός της ακτίνας
Α. Υπολογισμός της ακτίνας e Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 11

12 Β. Υπολογισμός της περιόδου
Β. Υπολογισμός της περιόδου e Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 12

13 Η περίοδος της κυκλικής τροχιάς είναι ανεξάρτητη από το μέτρο της ταχύτητας του σωματιδίου και από την ακτίνα της κυκλικής τροχιάς. Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 13

14 Εφαρμογές Μερκ. Παναγιωτόπουλος - Φυσικός www.merkopanas.blogspot.gr
14

15 Αν διπλασιαστεί η ταχύτητα του φορτίου, τότε
1. Φορτισμένο σωματίδιο εκτελεί κυκλική τροχιά ακτίνας R μέσα σε ομογενές μαγνητικό πεδίο. Αν διπλασιαστεί η ταχύτητα του φορτίου, τότε Α. η ακτίνα της κυκλικής τροχιάς του α. μένει σταθερή β. διπλασιάζεται. γ. υποδιπλασιάζεται δ. τετραπλασιάζεται. Β. η περίοδος περιστροφής του α. μένει σταθερή β. τετραπλασιάζεται. γ. υποδιπλασιάζεται δ. διπλασιάζεται. Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 15

16 α. έχει φορά αντίθετη των δυναμικών γραμμών και σταθερό μέτρο
2. Σωματίδιο που φέρει αρνητικό φορτίο εισέρχεται σε ομογενές μαγνητικό πεδίο με ταχύτητα κάθετη στις δυναμικές γραμμές του. Η επιτάχυνση του σωματιδίου α. έχει φορά αντίθετη των δυναμικών γραμμών και σταθερό μέτρο β. έχει τη φορά των δυναμικών γραμμών και σταθερό μέτρο γ. έχει φορά αντίθετη των δυναμικών γραμμών και μεταβαλλόμενο μέτρο δ. είναι συνεχώς κάθετη στην ταχύτητα του σωματιδίου και έχει σταθερό μέτρο. (Αγνοήστε τη βαρυτική δύναμη). Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 16

17 3. Ένα σωματίδιο μπαίνει κάθετα στις δυναμικές γραμμές ενός ομογενούς μαγνητικού πεδίου, στο σημείο Ο και αφού διαγράψει την τροχιά ΟΑ βγαίνει από το πεδίο στην θέση Α με ταχύτητα κάθετη προς την ταχύτητα εισόδου. Ποιες από τις παρακάτω προτάσεις είναι Σωστές και ποιες είναι Λάθος. Λ α. Το σωματίδιο φέρει θετικό φορτίο. β. Η δύναμη (ως διάνυσμα) που δέχεται το σωματίδιο από το πεδίο είναι σταθερή. Λ γ. Η δύναμη που δέχεται το σωματίδιο από το πεδίο είναι σταθερού μέτρου. Σ Λ δ. Η τροχιά μέσα στο πεδίο είναι παραβολική. ε. Ο χρόνος κίνησης από το Ο στο Α είναι ανάλογος προς την αρχική του ταχύτητα. Λ Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 17

18 Μερκ. Παναγιωτόπουλος - Φυσικός www.merkopanas.blogspot.gr
4. Ένα σωματίδιο κινούμενο ευθύγραμμα εισέρχεται σε ομογενές μαγνητικό πεδίο όπως φαίνεται στο σχήμα. Παρατηρούμε ότι συνεχίζει να κινείται ευθύγραμμα στο εσωτερικό του πεδίου. Δώστε μία πιθανή εξήγηση για το ότι δεν εκτρέπεται από την ευθύγραμμη διάδοσή του μέσα στο πεδίο. Μερκ. Παναγιωτόπουλος - Φυσικός 18

19 5. Πρωτόνια και πυρήνες He (He: ήλιον, ατομικός αριθμός 2, μαζικός αριθμός 4) εισέρχονται ταυτόχρονα, με την ίδια ταχύτητα σε ομογενές μαγνητικό πεδίο, κάθετα στις δυναμικές γραμμές του. Τότε, μέσα στο πεδίο: α. Η δύναμη που δέχονται οι πυρήνες ηλίου είναι μεγαλύτερη από τη δύναμη που δέχονται τα πρωτόνια. β. Τα πρωτόνια κάνουν κυκλική κίνηση μεγαλύτερης ακτίνας από αυτή των πυρήνων He. γ. Ο χρόνος κίνησης όλων των σωματιδίων είναι ίδιος. Σ Λ Σ Δίνεται: mπρωτονίου = mνετρονίου Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 19

20 (Μελέτη της κίνησης ενός φορτισμένου σωματιδίου σε ένα ή δύο ομογενή μαγνητικά πεδία)
Προσομοίωση 1 (http://surendranath.tripod.com/Applets/Electricity/MovChgMag/MCM.html) Μερκ. Παναγιωτόπουλος - Φυσικός Μερκ. Παναγιωτόπουλος - Φυσικός 20

21 Μερκ. Παναγιωτόπουλος - Φυσικός www.merkopanas.blogspot.gr
Ένα πρόβλημα από το CERN Στον κυκλικό επιταχυντή LHC του CERN, πρωτόνια, σε δύο δέσμες, θα επιταχύνονται με τη βοήθεια κοιλοτήτων ραδιοσυχνότητας σχεδόν στην ταχύτητα του φωτός c, αποκτώντας μια ενέργεια E=7 TeV δηλαδή E=1, J το καθένα. Στη συνέχεια τα πρωτόνια συγκρούονται έχοντας τόσο μεγάλες ενέργειες ώστε να δημιουργούνται πιθανώς νέα στοιχειώδη σωματίδια. Ο δακτύλιος μέσα στον οποίο κινούνται τα πρωτόνια έχει ακτίνα r=4243m και βρίσκεται σε βάθος 100m κάτω από την επιφάνεια του εδάφους. Η δύναμη Lorentz που θα οφείλεται σε 1232 υπεραγώγιμα μαγνητικά δίπολα (ηλεκτρομαγνήτες) τοποθετημένα πάνω στον δακτύλιο κατά μήκος της δέσμης των πρωτονίων, θα δρα ως κεντρομόλος δύναμη για την κυκλική κίνηση των πρωτονίων. (Υπεραγωγός είναι το υλικό εκείνο στο οποίο υπάρχει πλήρης απουσία ηλεκτρικής αντίστασης και αυτό στην περίπτωση των ηλεκτρομαγνητών του LHC επιτυγχάνεται με υγρό Ήλιο και σε θερμοκρασία 1,9 Κ). α. Υπολογίστε / εκτιμήστε την κεντρομόλο δύναμη σε κάθε πρωτόνιο, λαμβάνοντας υπ’ όψη ότι η ενέργεια των πρωτονίων δίνεται από τη σχέση ισοδυναμίας μάζας και ενέργειας του Einstein Ε=mc2 και ότι όπως αποδεικνύεται ο τύπος της κεντρομόλου και στις υψηλές ταχύτητες έχει την ίδια μορφή με εκείνη που έχει στην κλασική μηχανική με την προϋπόθεση ότι το m είναι αυτό που υπεισέρχεται στην εξίσωση E=mc2. β. Από την τιμή της κεντρομόλου δύναμης σε κάθε πρωτόνιο, υπολογίστε το μέτρο της έντασης Β του μαγνητικού πεδίου. Δίνεται το φορτίο κάθε πρωτονίου =1, C και η ταχύτητα του φωτός c=3.108m/s. Μερκ. Παναγιωτόπουλος - Φυσικός


Κατέβασμα ppt "Κίνηση φορτισμένου σωματιδίου σε ομογενές μαγνητικό πεδίο"

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google