Μελέτη Δ.Ε. με χρήση του Mathematica

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Βασικές έννοιες αλγορίθμων
Advertisements

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
Ταλαντωσεις – Συνθεση Ταλαντωσεων – Εξαναγκασμενες Ταλαντωσεις
9 Νοέμβρη 2002.
Σημειώσεις : Χρήστος Μουρατίδης
Ημερομηνία: 13/12/2006 Τμήμα: Πληροφορικής του Ιονίου Πανεπιστημίου
Ομάδα Γ. Ο υπολογιστής ως επιστημονικό εργαλείο. Ακρότατα συνάρτησης FindMinimum[x Cos[x],{x,2}] { ,{x  }} Plot[x Cos[x],{x,0,20}] FindMinimum[{x.
Μαθηματικοί Υπολογισμοί Χειμερινό Εξάμηνο η Διάλεξη Επίλυση Εξισώσεων Νοέμβρη 2002.
H Mathematica στην υπηρεσία της Φυσικής
ΚΕΦΑΛΑΙΟ 2 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
Ανάλυση Ι.2: Μέθοδος των διαφορών (differencing)
Για τη διδασκαλία της Τριγωνομετρίας
Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
Αριθμητική Ανάλυση Μεταπτυχιακού 6η Ε Β Δ Ο Μ Α Δ Α Ακαδημαϊκό Έτος Τετάρτη 26, Νοεμβρίου 2008 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΥΠΟΛΟΓΙΣΤΙΚΩΝ.
Διαφορικές Εξισώσεις Πρόβλημα αρχικών τιμών: Γενίκευση 1: Γενίκευση 2:
Σχετικά με κλασματικές παραστάσεις
Όνομα: G3MU05 όνομα καθηγητή: C.V. τμήμα: Γ3 έτος:2014.
Κεφάλαιο 2 Κίνηση σε μία διάσταση
1. Ευθύγραμμη κίνηση. Ένα σώμα κινείται πάνω σε μια ευθεία.
Ομάδα Α. Ο υπολογιστής ως επιστημονικό εργαλείο. Λίστες - Πίνακες In[1]:=lista1={a1, 2.1, x, Sqrt[2], I, Sin[x]} Out[1]:={a1, 2.1, x, 2, I, Sin[x]} Η.
Μερικές Διαφορικές Εξισώσεις ΙΙ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Συγγραφείς Α.Βακάλη Η. Γιαννόπουλος Ν. Ιωαννίδης Χ.Κοίλιας Κ. Μάλαμας Ι. Μανωλόπουλος Π. Πολίτης Γ΄ τάξη.
Μέθοδος Πεπερασμένων Στοιχείων
ΜΕΤΑΤΟΠΙΣΗ ΣΥΝΑΡΤΗΣΗΣ
Κάντε κλικ για έναρξη… Τ Ο ΠΕΡΙΒΑΛΛΟΝ ΕΡΓΑΣΙΑΣ Κέντρο εντολών Χώρος γραφικών (σελίδα) Χώρος σύνταξης διαδικασιών.
Κοζαλάκης Ευστάθιος ΠΕ03
ΚΕΦΑΛΑΙΟ Τι είναι αλγόριθμος
Πως μπορεί κανείς να λύσει προβλήματα με τη βοήθεια της Mathematica Πρόβλημα 10 α : Κλίση καμπύλης Πρόβλημα 10 β : Εμβαδόν καμπύλης Ομάδα Δ. Λύνοντας Προβλήματα.
Μερικές φορές το αποτέλεσμα εμφανίζεται αμέσως από κάτω.
ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΓΕΩΡΓΙΑΔΗΣ Α. ΝΙΚΟΛΑΟΣ Επιβλέπουσα: Γουσίδου-Κουτίτα Μαρία Αναπληρώτρια Καθηγήτρια Α.Π.Θ. ΑΡΙΘΜΗΤΙΚΗ ΔΙΕΡΕΥΝΗΣΗ ΜΕΘΟΔΩΝ.
Προγράμματα Συμβολικών Μαθηματικών.
Επίλυση Διακριτών Γραμμικών Συστημάτων Νικόλαος Καραμπετάκης Επίκουρος Καθηγητής Τμήμα Μαθηματικών, Α.Π.Θ.
ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΤΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΥΣ Ακαδημαϊκό Έτος Πέμπτη, 25 Ιουνίου η Εβδομάδα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ.
Ενότητα : Απόκριση Συχνότητας (Frequency Response)
ΚΕΦΑΛΑΙΟ Το αλφάβητο της ΓΛΩΣΣΑΣ
Διάλεξη 14: Εισαγωγή στη ροή ρευστών
 Ένα σώμα κινείται πάνω σε μια ευθεία.  Από μια θέση πάει σε μια άλλη.  Πως θα μελετήσουμε την κίνηση; 1. Ευθύγραμμη κίνηση.
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ ΚΕΦΑΛΑΙΟ 3ο ΕΠΙΜΕΛΕΙΑ :G5TA15-16 ΜΑΘΗΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΘΗΓΗΤΗΣ: CV ΕΤΟΣ :
Κατασκευή εργαλείου επίλυσης διαφορικών εξισώσεων με μερικές παραγώγους με χρηση του λογισμικού πακέτου Μαtlab ΓΕΩΡΓΙΟΣ ΜΑΓΓΟΣ ΕΠΙΒΛΕΠΩΝ:ΔΕΣΠΟΙΝΑ ΒΟΓΙΑΤΖΗ.
Κλασσική Μηχανική Ενότητα 2: Μονοδιάστατες Κινήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 8 η Διάλεξη ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΧΡΗΣΗΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΤΩΝ ΡΙΖΩΝ Το σύστημα ελέγχου.
Συμπληρωματική Πυκνότητα Ελαστικής Ενέργειας Συμπληρωματικό Εξωτερικό Έργο W: Κανονικό έργο Τελικές δυνάμεις Ρ, τελικές ροπές Μ, ολικές μετατοπίσεις δ.
ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΒΛΗΜΑ ΑΛΓΟΡΙΘΜΟΣ ΛΥΣΗ
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ (Κ105)
F(x,y,y΄, y΄΄, y΄΄΄,y΄΄΄΄, …, y(n)) = 0
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ Democritus University of Thrace Department of Production.
ΚΑΜΠΥΛΕΣ ΣΤΟ ΕΠΙΠΕΔΟ ΚΑΙ ΣΤΟ ΧΩΡΟ
με σταθερούς συντελεστές
ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ ΚΕΦΑΛΑΙΟ 3ο
Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Αναλυτικό πρόγραμμα διδασκαλίας του μαθήματος
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
Καθηγητής Σιδερής Ευστάθιος
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ανάπτυξη εκπαιδευτικής εφαρμογής.
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Αναλυτικό πρόγραμμα διδασκαλίας του μαθήματος
έχει δύο άνισες λύσεις τις:
Ψηφιακός Έλεγχος διάλεξη Ρυθμιστής PID Ψηφιακός Έλεγχος.
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ (Κ105)
F(x,y(x),y΄(x), y΄΄(x), y΄΄΄(x), …, y(n)(x)) = 0
3. ακριβείς δ.ε. 1ης τάξης.
2. ομογενείς δ.ε. 1ης τάξης ως προς τις μεταβλητές τους.
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ Democritus University of Thrace Department of Production.
Διαφορική εξίσωση Riccati.
(χωριζόμενων μεταβλητών, γραμμικές 1ης τάξης)
Η έννοια του γραμμικού συστήματος και η γραφική επίλυσή του. Γ΄Γυμνασίου.
Μεταγράφημα παρουσίασης:

Μελέτη Δ.Ε. με χρήση του Mathematica ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ Μελέτη Δ.Ε. με χρήση του Mathematica

Εισαγωγή Η επίλυση ΔΕ με Mathematica γίνεται απευθείας με τις εντολές DSolve : επίλυση με συμβολικό τρόπο NSolve : αριθμητική (προσεγγιστική) επίλυση

Εισαγωγή Και οι δυο εντολές δέχονται μια ή περισσότερες εξισώσεις για επίλυση Πρώτης ή ανώτερης τάξης εξισώσεις Γραμμικές ή μη γραμμικές εξισώσεις Προβλήματα με αρχικές συνθήκες, συνοριακά προβλήματα.

Η εντολή DSolve

Συμβολική επίλυση (symbolic solution) Σύνταξη εντολών για επίλυση ΔΕ πρώτης τάξης Γενική λύση ΔΕ: eqn=y’[t] ==τύπος ΔΕ DSolve[eqn,y[t],t] όπου eqn η ονομασία που δείνει ο χρήστης y[t] η άγνωστη συνάρτηση της ΔΕ και t η μεταβλητή

Παραδείγματα Έστω η ΔΕ eqn=y'[t] ==r y[t](M-y[t]) DSolve[eqn,y[t],t] Οι εξισώσεις 0ρίζονται με διπλό = Παραδείγματα Έστω η ΔΕ eqn=y'[t] ==r y[t](M-y[t]) DSolve[eqn,y[t],t]

Όπου C[1] είναι η σταθερά ολοκλήρωσης c Η λύση της ΔΕ δόθηκε από το πρόγραμμα :

ΔΕ με αρχικές συνθήκες Σύνταξη εντολών για επίλυση ΔΕ πρώτης τάξης με αρχικές συνθήκες eqn=y’[t] ==τύπος ΔΕ con=αρχική συνθήκη DSolve[{eqn,con},y[t],t] Είναι ο τύπος της ΔΕ ο οποίος προκύπτει αν λύσουμε την αρχική ΔΕ ως προς y’

Παραδείγματα Να λυθεί το πρόβλημα

Πρόβλημα Να βρεθεί η μερική λύση της ΔΕ

Λύση Η λύση είναι με Mathematica

Γραφικές παραστάσεις Πολλές φορές θέλουμε να έχουμε εκτός από τη λύση της ΔΕ και την γραφική παράσταση κάποιας ή κάποιων μερικών λύσεων από τη γενική λύση της διαφορικής

Πρόβλημα Να λυθεί το πρόβλημα αρχικής τιμής Μετά να γίνει η γραφική παράσταση της λύσης στο διάστημα -1<χ<1

Λύση Η λύση με Mathematica

Γραφική λύση

Παράδειγμα Να βρεθεί η γενική λύση της ΔΕ Να γίνει γραφική παράσταση των λύσεων για τις οποίες η αυθαίρετη σταθερά παίρνει τις τιμές -2,-1,0,1 και 2 (ΟΛΟΚΛΗΡΩΤΙΚΕΣ ΚΑΜΠΥΛΕΣ)

Λύση Βρίσκουμε τη γενική λύση, με την εντολή:

Γραφική παράσταση Evaluate Η εντολή Evaluate είναι απαραίτητη για να δημιουργηθεί πρώτα η Λίστα των 5 λύσεων και μετά να δουλέψει η Plot

Παράδειγμα Να λυθούν οι ΔΕ Στη δεύτερη ΔΕ να γίνουν ολοκληρωτικές καμπύλες για 10 αρνητικές τιμές της αυθαίρετης σταθεράς και για τιμές y στο διάστημα -5<y<0

Λύση

Γραφική λύση PlotRange Η εντολή PlotRange δίνεται για να καθορίσουμε το σύνολο τιμών στον άξονα y

Αρκετές ΔΕ που καταλήγουν σε ΔΕ ΧΩΡΙΖΟΜΕΝΩΝ μεταβλητών αντιμετωπίζονται αμέσως με την εντολή DSolve χωρίς να χρειάζεται να κάνουμε επι μέρους ολοκληρώσεις σε κάποιο ενδιάμεσο στάδιο.

Παράδειγμα Να λυθεί η ΔΕ Να σχεδιαστούν οι ολοκληρωτικές καμπύλες όταν η αυθαίρετη σταθερά παίρνει τιμές -2,-1,0,1,2

Λύση

Γραφική παράσταση PlotStyle RGBColor H εντολή RGBColor δείνει το κατάλληλο χρώμα