Πιθανότητες & Τυχαία Σήματα

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Πιθανότητες & Τυχαία Σήματα
Advertisements

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΧΩΡΟΣ ΚΑΤΑΣΤΑΣΗΣ.
Πιθανότητες & Τυχαία Σήματα
Εργαστήριο Ψηφιακής Επεξεργασίας Εικόνας
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ. Ε. Ι
Περιγραφή Σημάτων Συνεχούς Χρόνου
Πιθανότητες & Τυχαία Σήματα Συσχέτιση
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Laplace.
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z.
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ.
Εισαγωγικές Έννοιες Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Δισδιάστατα Σήματα και Συστήματα #1
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ-ΦΙΛΤΡΑ.
ΜΟΝΤΕΛΑ ΠΕΠΕΡΑΣΜΕΝΩΝ ΔΙΑΦΟΡΩΝ & ΠΑΡΑΓΩΓΩΝ
Ο Μετασχηματισμός Laplace και ο Μετασχηματισμός Ζ
Υπολογισμός της συνέλιξης
ΚΕΦΑΛΑΙΟ 5 ΧΩΡΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ
Κατηγορίες συστημάτων
Περιστροφή γύρω σημείο Ο κατά γωνία φ στο πεδίο Χ,Υ
Τίτλος πτυχιακής εργασίας
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 4) 1 Από κοινού κατανομή πολλών ΤΜ Ορίζεται ως από κοινού συνάρτηση κατανομής F(x 1, …, x n ) n τυχαίων.
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
Βασικά Στοιχεία Ψηφιακής Επεξεργασίας Σήματος (ΙΙ)
Βασικά Στοιχεία Ψηφιακής Επεξεργασίας Σήματος (ΙΙI)
ΗΥ231 – Εισαγωγή στην Ηλεκτρονική
Πηγή: Βιοστατιστική [Β.Γ. Σταυρινός, Δ.Β. Παναγιωτάκος]
ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ
Επίλυση Διακριτών Γραμμικών Συστημάτων Νικόλαος Καραμπετάκης Επίκουρος Καθηγητής Τμήμα Μαθηματικών, Α.Π.Θ.
Άρτεμις Κωσταρίγκα Επίβλεψη: Ν. Καραμπετάκης ΙΟΥΝΙΟΣ 2005
Ενότητα : Απόκριση Συχνότητας (Frequency Response)
JPEG Μια τεχνική συμπίεσης ακίνητης εικόνας. Η Τεχνική JPEG Αφορά συμπίεση ακίνητων εικόνων Είναι τεχνική συμπίεσης με απώλειες Το πρόβλημα είναι η εκάστοτε.
Βασικά Στοιχεία Ψηφιακής Επεξεργασίας Σήματος (V).
Μετασχηματισμός Fourier
Μετασχηματισμός Fourier
Π ΑΝΕΠΙΣΤΗΜΙΟ Δ ΥΤΙΚΗΣ Μ ΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Θεωρία Σημάτων και Συστημάτων 2013 Μάθημα 3 ο Δ. Γ. Τσαλικάκης.
Μετασχηματισμός Fourier Διακριτού Χρόνου Δειγματοληψία
Ψηφιακή Επεξεργασία Σήματος και Εικόνας
Σηματα και Συστηματα Χρήστος Μιχαλακέλης, PhD Λέκτορας
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 6η Φίλτρα.
Σήματα και Συστήματα Σήματα και Συστήματα Διακριτού Χρόνου Μετασχηματισμός Ζ Χαροκόπειο Πανεπιστήμιο Τμήμα Πληροφορικής και Τηλεματικής Χρήστος Μιχαλακέλης,
Σήματα και Συστήματα ΙΙ Διάλεξη: Εβδομάδα Καθηγητής Πέτρος Γρουμπός Επιμέλεια παρουσίασης: Βασιλική Μπουγά 1.
Ψηφιακές Επικοινωνίες Ι Ενότητα 3: Αποδιαμόρφωση και Ανίχνευση Βασικής Ζώνης Επίκουρος Καθηγητής Βασίλης Στυλιανάκης Πολυτεχνική Σχολή Πανεπιστημίου Πατρών.
Εισαγωγή στη διαχείριση χαρτοφυλακίου Ως επενδυτικό χαρτοφυλάκιο ορίζουμε Μ ια περιουσία που αποτελείται από μία ή περισσότερες κατηγορίες επενδυτικών.
ΚΑΤΑΣΤΑΤΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. ΜΟΝΤΕΛΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ Ένα σύστημα μπορεί να ορισθεί με τη βοήθεια δυο σημάτων x(1) - είσοδος στο σήμα y( )- έξοδος. Η έννοια.
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Τμήμα Εφηρμοσμένης Πληροφορικής και Πολυμέσων Εργαστήριο Νευρωνικών Δικτύων Slide 1 ΨΗΦΙΑΚΑ ΦΙΛΤΡΑ Προδιαγραφές.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 3η Μετασχηματισμός Fourier.
Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #4: Μαθηματική εξομοίωση συστημάτων στο επίπεδο της συχνότητας – Μετασχηματισμός Laplace και εφαρμογές σε ηλεκτρικά.
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
ΜΕΘΟΔΟΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
Θεωρία Σημάτων και Συστημάτων 2013
ΑΝΑΠΤΥΓΜΑ ΣΕ ΣΕΙΡΑ FOURIER - ΣΕΙΡΑ FOURIER
ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Θεωρία Σημάτων: ανάλυση στο χρονικό και στο φασματικό πεδίο Θεωρία Γραμμικών Συστημάτων Συνεχής συνέλιξη (Continuous convolution) Διακριτού.
ΔΙΑΚΡΙΤΑ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Σήματα
Βασική Στατιστική Επεξεργασία. Ερμηνεία Δεδομένων - 2.
Η Έννοια της τυχαίας Διαδικασίας
ΜΠΣ ΠΡΑΣΙΝΗ ΕΝΕΡΓΕΙΑ ΤΜΗΜΑ ΗΜ&ΤΥ
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας
Η Έννοια της τυχαίας Διαδικασίας
Ψηφιακός Έλεγχος διάλεξη Παρατηρητές Ψηφιακός Έλεγχος.
Πολυπαραγοντική γραμμική εξάρτηση
Συστήματα Αυτομάτου Ελέγχου II
SR latch R Q S R Q Q’ Q’ S.
Επαναληπτικές ασκήσεις
Δισδιάστατα Σήματα και Συστήματα #1
Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
ΕΙΣΑΓΩΓΗ K06 Σήματα και Γραμμικά Συστήματα Οκτώβρης 2005
Διάλεξη 2: Συστήματα 1ης Τάξης
Σεραφείμ Καραμπογιάς Τι είναι σήμα;
ΠΡΟΓΡΑΜΜΑΠΟΔΗΛΑΣΙΑΣ ΜΑΘΑΙΝΩ ΤΑ ΣΗΜΑΤΑ.
Μεταγράφημα παρουσίασης:

Πιθανότητες & Τυχαία Σήματα Διγαλάκης Βασίλης

Γραμμικά Συστήματα Σύστημα: Κατηγορίες: Συνεχή/Διακριτά Γραμμικά/Μη Γραμμικά Αν Τότε

Γραμμικά Συστήματα Σύστημα: Κατηγορίες: Χρονικά Αναλλοίωτα/Μεταβαλλόμενα Αν Αιτιατά/Μη αιτιατά Η έξοδος του δεν εξαρτάται από μελλοντικές τιμές της εισόδου:

Γραμμικοί Μετασχηματισμοί Τ.Δ. Γραμμικός Μετασχηματισμός Τ.Δ.: Χ η είσοδος του «συστήματος» Α και Υ η έξοδος. Η μέση τιμή: Ο πίνακας συνδιακύμανσης:

Απόκριση Διακριτών ΓΧΑ Συστημάτων Στην περίπτωση μηδενικών αρχικών συνθηκών, υπολογίζεται από τη συνέλιξη: Αν το σύστημα είναι αιτιατό  h(k)=0,k<0 Για να είναι ευσταθές:

Μετασχηματισμός Fourier κρουστικής απόκρισης Ορίζεται ως η συνάρτηση μεταφοράς του συστήματος:

Μέση τιμή διακριτού ΓΧΑ συστήματος Αν X(n) είναι Τ.Σ., είσοδος σε διακριτό ΓΧΑ σύστημα, τότε η έξοδος: Υ(n) είναι τυχαίο σήμα Μέση τιμή: Δηλαδή:

Συνάρτηση αυτοσυσχέτισης διακριτού ΓΧΑ συστήματος Συνάρτηση αυτοσυσχέτισης:

Για WSS είσοδο σε ΓΧΑ σύστημα (1) Αν X(n) WSS: Οπότε για Υ(n): αφού Συνεπώς: 

Για WSS είσοδο σε ΓΧΑ σύστημα (2) Αν X(n) WSS: Οπότε για Υ(n): Αλλά για RYX(n,n+k) ………

Για WSS είσοδο σε ΓΧΑ σύστημα (3) Ισχύει:

Για WSS είσοδο σε ΓΧΑ σύστημα (4) Τελικά: Όπου:  Αν σε ένα ΓΧΑ σύστημα Χ(n) WSS  και Y(n) WSS

Για WSS είσοδο σε ΓΧΑ σύστημα (5) Αν σε ένα ΓΧΑ σύστημα η είσοδος Χ(n) είναι Τ.Σ. WSS τότε και η έξοδος Y(n) θα είναι WSS. Αντιστοιχία με τον γραμμικό μετασχηματισμό Τυχαίων Διανυσμάτων: Υ=ΑΧ:

Πυκνότητα Φάσματος Ισχύος Εξόδου Αν η είσοδος σε ένα ΓΧΑ σύστημα είναι WSS διαδικασία, η έξοδος θα έχει συνάρτηση αυτοσυσχέτισης:  Η πυκνότητα φάσματος ισχύος της εξόδου:

Διακριτά συστήματα και μετασχηματισμοί διανυσμάτων Για αιτιατό ΓΧΑ σύστημα: Αν h(k) είναι αιτιατό σύστημα με h(k)=0 για k<0 και X(n)=0 για n<0   Για διάφορες χρονικές στιγμές:

Διακριτά συστήματα και μετασχηματισμοί διανυσμάτων Σε μορφή πίνακα: Γραμμικός μετασχηματισμός για το Τ.Δ. Συνεπώς:

Παράδειγμα (1) Η είσοδος X(n) σε ΓΧΑ σύστημα είναι στατική διαδικασία με μx=0 και Rx(k) = δ(k). Η κρουστική απόκριση του συστήματος είναι h(k)=1, k=0,1, και 0 αλλού. Υπολογίστε μέση τιμή, συνάρτηση αυτοσυσχέτισης και πυκνότητα φάσματος ισχύος της εξόδου. Μέση τιμή: Συν. Αυτοσυσχέτισης:

Παράδειγμα (1) PSD: Όμως: Επίσης:  Τελικά: 

Απόκριση Συνεχών ΓΧΑ Συστημάτων Η απόκριση ενός συνεχούς ΓΧΑ συστήματος σε ένα σήμα Χ(t), στην περίπτωση μηδενικών αρχικών συνθηκών, υπολογίζεται από τη συνέλιξη της εισόδου με την κρουστική απόκριση του συστήματος: Αν είναι αιτιατό h(t)=0 για t<0. Για να είναι ευσταθές το σύστημα:

Απόκριση Συνεχών ΓΧΑ Συστημάτων Ο Fourier της κρουστικής απόκρισης είναι η συνάρτηση μεταφοράς του συστήματος: Για Ντετερμινιστικό σήμα:

Μέση τιμή εξόδου συνεχούς ΓΧΑ συστήματος Η έξοδος του συνεχούς ΓΧΑ συστήματος υπολογίζεται: Μέση τιμή:

Αυτοσυσχέτιση εξόδου συνεχούς ΓΧΑ συστήματος Συνάρτηση αυτοσυσχέτισης:

WSS είσοδος συνεχούς ΓΧΑ συστήματος X(t) WSS  Οπότε:

Πυκνότητα Φάσματος Ισχύος Εξόδου Ισχύει: PSD εξόδου:

Συνοψίζοντας….. Για ΓΧΑ σύστημα με κρουστική απόκριση h(t) και συνάρτηση μεταφοράς H(f) στο οποίο εφαρμόζουμε ένα τυχαίο σήμα εισόδου X(t) ισχύουν για το σήμα εξόδου:

Παράδειγμα (2) Δώστε την τιμή της παραμέτρου α ώστε η σηματοθορυβική σχέση στην έξοδο να γίνει μέγιστη. Υπολογίστε τα Β και θ για την τιμή αυτή.

Παράδειγμα (2) Μορφή Συστήματος: Έχω 2 συνιστώσες στην είσοδο: SNR στην έξοδο:

Παράδειγμα (2) Υπολογισμός του a για μεγιστοποίηση του SNR: Έστω ότι εφαρμόζουμε καθαρό από θόρυβο σήμα εισόδου: Τότε: όμως:

Παράδειγμα (2) Παίρνοντας Fourier: Αν : Μέση ισχύς εισόδου: Μέση ισχύς εξόδου:

Παράδειγμα (2): Μέση ισχύς σήματος εξόδου Μέση ισχύς εξόδου: Αλλά: Τελικά:

Παράδειγμα (2): Μέση ισχύς θορύβου εξόδου Μέση ισχύς θορύβου στην έξοδο: στην είσοδο: στην έξοδο: Ιδιότητα:

Παράδειγμα (2): Βελτιστοποίηση SNR Σηματοθορυβική σχέση: Το SNR είναι συνάρτηση του a. Η βέλτιστη τιμή του a που μεγιστοποιεί το SNR βρίσκεται: