ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Περιγραφική Στατιστική
Advertisements

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
Εβδομάδα 3 Παρουσίαση Δεδομένων
Στατιστική Ι Παράδοση 5 Οι Δείκτες Διασποράς Διασπορά ή σκεδασμός.
Στατιστική Ι Παράδοση 6 Η Κανονική Κατανομή
Εισαγωγή στην Κοινωνιογλωσσολογία
ΚΕΦΑΛΑΙΟ 3 Περιγραφική Στατιστική
Είδη δειγμάτων Τυχαίο/ μη τυχαίο
ΚΕΦΑΛΑΙΟ 5 ΧΩΡΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ
Βασικές Αρχές Μέτρησης
ΕΙΣΑΓΩΓΗ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
Στατιστική I Χειμερινό Γ. Παπαγεωργίου
Ανάλυση Ποσοτικών Δεδομένων Στατιστική
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΔΙΑΚΡΙΤΩΝ ΚΑΙ ΣΥΝΕΧΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ
Πηγή: Βιοστατιστική [Β.Γ. Σταυρινός, Δ.Β. Παναγιωτάκος]
ΣΤΑΤΙΣΤΙΚΗ Η επιστήμη που ασχολείται με την συλλογή δεδομένων,ανάλυση και ερμηνεία αυτών Η επιστήμη με τη χρήση της οποίας λαμβάνουμε αποφάσεις κάτω από.
Εισαγωγή Στατιστική είναι η επιστήμη που με τη βοήθεια επιστημινκών μεθόδων ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση αριθμητικών στοιχείων.
ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΓΩΓΗ: ΣΗΜΕΙΑΚΕΣ ΕΚΤΙΜΗΣΕΙΣ & ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
Αρχές επαγωγικής στατιστικής
Τι είναι η Κατανομή (Distribution)
Διάλεξη  Μέτρηση: Είναι μια διαδικασία κατά την οποία προσδίδουμε αριθμητικά δεδομένα σε κάποιο αντικείμενο, σύμφωνα με κάποια προκαθορισμένα.
Στατιστικά περιγραφικά μέτρα Παναγιώταρου Αλίκη Τμήμα Νοσηλευτικής 5η Διάλεξη.
ΔΗΜΟΠΑΘΟΛΟΓΙΑ ΤΗΣ ΔΙΑΤΡΟΦΗΣ
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Περιγραφική Στατιστική Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Περιγραφική Στατιστική Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και.
Σχεδιασμός των Μεταφορών Ενότητα #5: Δειγματοληψία – Sampling. Δρ. Ναθαναήλ Ευτυχία Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών.
Εισαγωγή στην Στατιστική Χαράλαμπος Γναρδέλλης Τμήμα ΥΔΑΔ ΤΕΙ Μεσολογγίου.
Εισαγωγή στη διαχείριση χαρτοφυλακίου Ως επενδυτικό χαρτοφυλάκιο ορίζουμε Μ ια περιουσία που αποτελείται από μία ή περισσότερες κατηγορίες επενδυτικών.
Σπύρος Αβδημιώτης MBA PhD Τμήμα Διοίκησης Επιχειρήσεων Κατεύθυνση Διοίκησης Τουριστικών Επιχειρήσεων & Επιχειρήσεων Φιλοξενίας Εαρινό Εξάμηνο 2016.
ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ Γ. Σιδερίδης. ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ- ΜΕΘΟΔΟΛΟΓΙΑΣ Η στατιστική ως επιστήμη.....γιατί ακριβώς τη χρειαζόμαστε; Η στατιστική ως επιστήμη.....γιατί.
Αρχές επαγωγικής στατιστικής Τμήμα :Νοσηλευτικής Πατρών Διδάσκουσα: Παναγιώταρου Αλίκη Διάλεξη 9.
ΕΛΕΓΧΟΙ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Η πιο συνηθισμένη στατιστική υπόθεση είναι η λεγόμενη Υπόθεση Μηδέν H 0. –Υποθέτουμε ότι η εμφανιζόμενη διαφορά μεταξύ μιας.
Δεδομένα Συχνότητα-Μέτρα Θέσης Μέτρα Διασποράς. Δεδομένα ΠοσοτικάΣυνεχή Διακριτά Ποιοτικά Δεδομένα ΠρωτογενήΔευτερογενή.
ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ για επεξεργασία δεδομένων έρευνας Εμμανουήλ Κακάρογλου Σχολικός Σύμβουλος ΠΕ12.
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΓΡΑΜΜΑΤΑ Πηγή: Βιοστατιστική [Σταυρινός / Παναγιωτάκος] Βιοστατιστική [Τριχόπουλος / Τζώνου / Κατσουγιάννη]
ΔΙΑΛΕΞΗ 11η Ποσοτική έρευνα υγείας
Στατιστική Στατιστική είναι η συλλογή, οργάνωση, ανάλυση,
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ - ΑΣΥΜΜΕΤΡΙΑΣ - ΚΥΡΤΩΣΕΩΣ
Επικρατούσα τιμή. Σε περιπτώσεις, που διαφορετικές τιμές μιας μεταβλητής επαναλαμβάνονται περισσότερο από μια φορά, η επικρατούσα τιμή είναι η συχνότερη.
Ανάλυση- Επεξεργασία των Δεδομένων
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Δειγματοληψία Στην Επαγωγική στατιστική οδηγούμαστε σε συμπεράσματα και αποφάσεις για τις παραμέτρους ενός πληθυσμού με τη βοήθεια ενός τυχαίου δείγματος.
Μέτρα μεταβλητότητας ή διασποράς
Εισαγωγή στην Στατιστική
ΙΕΚ Γαλατσίου Στατιστική Ι
Καθηγητής Στατιστικής - Βιοστατιστικής
Ερμηνεία Σχετικού λόγου ( Odds ratio ) -1
Διαλέξεις στη Βιοστατιστική
Πού χρησιμοποιείται ο συντελεστής συσχέτισης (r) pearson
Άσκηση 2-Περιγραφικής Στατιστικής
Η ανάγκη χρήσης μεταβλητών
ΙΕΚ Γαλατσίου Στατιστική ΙΙ Μάθημα 6
Δρ. Γιώργος Μαρκάκης Καθηγητής Βιομετρίας Τ.Ε.Ι. Κρήτης
Εισαγωγή στην Στατιστική
Η παρουσίαση του στατιστικού υλικού γίνεται με δύο τρόπους. 1 Η παρουσίαση του στατιστικού υλικού γίνεται με δύο τρόπους! 1. Ο πρώτος συνίσταται.
Ομαδοποιημένη Κατανομή Συχνοτήτων
ΙΕΚ Γαλατσίου Στατιστική Ι Μάθημα 3
Ποσοτικές μέθοδοι περιγραφής δεδομένων
Η ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ ΠΙΘΑΝΟΤΗΤΑΣ.
ΚΑΤΑΝΟΜΕΣ Δ. Τσιπλακίδης
ΣΤΑΤΙΣΤΙΚΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Επαγωγική Στατιστική Συσχέτιση – Συντελεστής συσχέτισης Χαράλαμπος Γναρδέλλης Τμήμα Τεχνολογίας Αλιείας και Υδατοκαλλιεργειών.
Στατιστικά Περιγραφικά Μέτρα
Παναγιώταρου Αλίκη Τμήμα Νοσηλευτικής
ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧ/ΣΕΩΝ ΕΡΓΑΣΤΗΡΙΟ 2 ΔΔΕ.
Βαςικα Στατιςτικα Μετρα
Βιοστατιστική (Θ) ΤΕΙ Αθήνας Ενότητα 3: Περιγραφική στατιστική
Επαγωγική Στατιστική Συσχέτιση – Συντελεστές συσχέτισης Χαράλαμπος Γναρδέλλης Εφαρμογές Πληροφορικής στην Αλιεία και τις Υδατοκαλλιέργειες.
Μεταγράφημα παρουσίασης:

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΓΡΑΜΜΑΤΑ Πηγή: Βιοστατιστική [Σταυρινός / Παναγιωτάκος] Βιοστατιστική [Τριχόπουλος / Τζώνου / Κατσουγιάννη]

Περιγραφική Στατιστική Με τις στατιστικές μεθόδους επιδιώκεται αφενός η συνοπτική αλλά εμπεριστατωμένη παρουσίαση των ευρημάτων μιας μελέτης (περιγραφική στατιστική) και αφετέρου η συναγωγή συμπερασμάτων που βασίζονται στα ευρήματα αυτά (συμπερασματολογική στατιστική / επαγωγική στατιστική)

Μεταβλητές Ως μεταβλητή θεωρούμε κάθε χαρακτηριστικό το οποίο μπορεί να μεταβληθεί ή να διαφοροποιηθεί κατά μήκος του χρόνου, από τόπο σε τόπο, από άτομο σε άτομο ή από ομάδα σε ομάδα (πχ ηλικία, ύψος, εισόδημα, συγκέντρωση χοληστερόλης, αρτηριακή πίεση, ρυθμό γεννητικότητας κτλ)

Μεταβλητές Ποιοτική ονομάζεται η μεταβλητή που περιγράφει κάποιο ποιοτικό χαρακτηριστικό ενός ατόμου ή μιας ομάδας {παράδειγμα} Ποσοτική ονομάζεται η μεταβλητή που μπορεί να μετρηθεί με τη συνήθη έννοια του όρου Συνεχής Ασυνεχής Ως ανεξάρτητη χαρακτηρίζεται μια μεταβλητή όταν επηρεάζει μια άλλη μεταβλητή. Ως εξαρτημένη χαρακτηρίζεται μια μεταβλητή όταν επηρεάζεται από μια άλλη μεταβλητή.

Διάταξη Παρατηρήσεων Μια πρώτη χρήσιμη μορφή οργάνωσης είναι η διάταξη των παρατηρήσεων κατά τάξη αύξοντος ή φθίνοντος μεγέθους

Κατανομή Συχνοτήτων για Ποσοτικές Μεταβλητές Κατανομή Συχνοτήτων: Υπολογισμός του πλήθους των παρατηρήσεων

Κατανομή Συχνοτήτων για Ποσοτικές Μεταβλητές Διάταξη παρατηρήσεων σε ομάδες (στην κατανομή συχνοτήτων): Κατάλληλος αριθμός ομάδων [6 -20 ομάδες] {παράδειγμα} Σταθερό εύρος όλων των ομάδων μέσα στην ίδια κατανομή συχνοτήτων {παράδειγμα}

Ιστόγραμμα και Πολύγωνο Συχνοτήτων

Ιστόγραμμα και Πολύγωνο Συχνοτήτων

Ιστόγραμμα και Πολύγωνο Συχνοτήτων

Μορφές και Χαρακτηριστικά Κατανομών Συχνοτήτων Ποσοτικών Μεταβλητών

Μορφές και Χαρακτηριστικά Κατανομών Συχνοτήτων Ποσοτικών Μεταβλητών

Μορφές και Χαρακτηριστικά Κατανομών Συχνοτήτων Ποσοτικών Μεταβλητών

Μορφές και Χαρακτηριστικά Κατανομών Συχνοτήτων Ποσοτικών Μεταβλητών

Ιστόγραμμα σε Ποιοτικές Μεταβλητές

Διάγραμμα Αθροιστικών Σχετικών Συχνοτήτων Η Αθροιστική Σχετική Συχνότητα ενός διαστήματος ορίζεται ως το ποσοστό των παρατηρήσεων των οποίων η τιμή είναι μικρότερη ή ίση από το άνω όριο του διαστήματος αυτού Η πολυγωνική γραμμή που προκύπτει ονομάζεται διάγραμμα των αθροιστικών συχνοτήτων

Διάγραμμα Αθροιστικών Σχετικών Συχνοτήτων

ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΑΡΙΘΜΗΤΙΚΑ ΠΕΡΙΓΡΑΦΙΚΑ ΜΕΤΡΑ

Αριθμητικά Περιγραφικά Μέτρα Κάθε Αριθμητικό Περιγραφικό Μέτρο που υπολογίζεται από το δείγμα, ονομάζεται στατιστική. Μια στατιστική μεταβάλλεται από δείγμα σε δείγμα Κάθε Αριθμητικό Περιγραφικό Μέτρο που υπολογίζεται από το σύνολο του πληθυσμού, ονομάζεται παράμετρος του πληθυσμού αυτού. Κάθε παράμετρος είναι μια σταθερά, δηλ έχει μια μοναδική τιμή στον πληθυσμό.

Αριθμητικά Περιγραφικά Μέτρα Μέτρα Κεντρικής Τάσεως Μέτρα Διασποράς Μέτρα Μεταβλητότητας Μέτρα Ισοκατανομής

Μέτρα Κεντρικής Τάσεως Αριθμητικός Μέσος Διάμεσος Επικρατούσα Τιμή

Αριθμητικός Μέσος

Περιγραφικά Μέτρα

Περιγραφικά Μέτρα

Αριθμητικός Μέσος Βασικά χαρακτηριστικά: Ορίζεται μονοσήμαντα Έχει απλή ερμηνεία, ως ο μέσος όλων των παρατηρήσεων Υπολογίζεται εύκολα Είναι αντιπροσωπευτικός του συνόλου των παρατηρήσεων Αποτελεί βάση πολλών στατιστικών ελέγχων Επηρεάζεται πολύ από τις ακραίες παρατηρήσεις Είναι η καλύτερη εκτιμήτρια του μέσου μ της Χ στον πληθυσμό, όταν η κατανομή των τιμών της Χ στον πληθυσμό είναι κανονική. Είναι ακατάλληλος ως μέτρο κεντρικής τάσεως όταν η κατανομή των τιμών της Χ στον πληθυσμό απέχει πολύ από την κανονική.

Διάμεσος Βασικά χαρακτηριστικά: Ορίζεται μονοσήμαντα Έχει απλή ερμηνεία Υπολογίζεται εύκολα Δεν επηρεάζεται από ακραίες τιμές Είναι η καλύτερη εκτιμήτρια της διαμέσου στον πληθυσμό. Σε συμμετρική κατανομή η διάμεσος τυχαίου δείγματος είναι και αμερόληπτη εκτιμήτρια του μέσου μ, αλλά όχι τόσο αποτελεσματική όσο ο αριθμητικός μέσος Οι περισσότεροι στατιστικοί έλεγχοι βασίζονται στον αριθμητικό μέσο και δε χρησιμοποιούν τη διάμεσο

Επικρατούσα Τιμή Βασικά χαρακτηριστικά: Δεν ορίζεται μονοσήμαντα Η επικρατούσα τιμή σε ένα τυχαίο δείγμα είναι η καλύτερη εκτιμήτρια της επικρατούσας τιμής στον πληθυσμό Όταν το τυχαίο δείγμα λαμβάνεται από ένα συμμετρικό πληθυσμό με μια κορυφή, τότε η επικρατούσα τιμή είναι αμερόληπτη εκτιμήτρια του μέσου και της διαμέσου του πληθυσμού αλλά όχι τόσο αποτελεσματική Ως μέτρο κεντρικής τάσεως, η επικρατούσα τιμή επηρεάζεται από την ασυμμετρία λιγότερο από τον μέσο και τη διάμεσο Επηρεάζεται από τον τρόπο δειγματοληψίας και από τον τρόπο ομαδοποίησης των στοιχείων Σε μια συμμετρική κατανομή με μια κορυφή, η διάμεσος βρίσκεται ανάμεσα στο μέσο και στην επικρατούσα τιμή και χωρίζει την απόστασή τους σε δύο τμήματα που έχουν λόγο 1:2

Σχετικές Θέσεις ΜΚΤ

Μέτρα Διασποράς και Μεταβλητότητας

Μέτρα Διασποράς και Μεταβλητότητας Εύρος Μεταβολής Τεταρτημοριακή Απόκλιση Διακύμανση / Τυπική Απόκλιση Συντελεστής Μεταβλητότητας

Εύρος Μεταβολής Το εύρος μεταβολής των τιμών μιας μεταβλητής Χ ισούται με τη διαφορά της μικρότερης τιμής της Χ από τη μεγαλύτερη τιμή της

Τεταρτημοριακή Απόκλιση Η Τεταρτημοριακή Απόκλιση ορίζει ένα μέτρο διασποράς γύρω από τη διάμεσο Boxplot

Διακύμανση

Τυπική Απόκλιση

Διακύμανση – Τεταρτημοριακή Απόκλιση Η διακύμανση καθώς και η τυπική απόκλιση ενός συνόλου τιμών ή ενός δείγματος είναι μέτρα διασποράς γύρω από τον μέσο των τιμών αυτών, ενώ η τεταρτημοριακή απόκλιση είναι μέτρο διασποράς γύρω από τη διάμεσο

Διακύμανση και Τυπική Απόκλιση Σε περίπτωση που οι τιμές της Χ προέρχονται από έναν πληθυσμό του οποίου οι συχνότητες ακολουθούν την κανονική κατανομή αποδεικνύεται ότι: Στο διάστημα [μ-σ, μ+σ] περιλαμβάνεται το 68% των τιμών της Χ Στο διάστημα [μ-2σ, μ+2σ] περιλαμβάνεται το 95% των τιμών της Χ Στο διάστημα [μ-3σ, μ+3σ] περιλαμβάνεται το 99% των τιμών της Χ

Διακύμανση και Τυπική Απόκλιση

Κατανομή Συχνοτήτων Ποιοτικών Μεταβλητών Το πλήθος των παρατηρήσεων (άξονας y) αναφέρεται ως συχνότητα

Εύρος Τιμών των Ομάδων

Ομαδοποίηση Παρατηρήσεων k: αριθμός διαστημάτων n: αριθμός παρατηρήσεων w: εύρος του διαστήματος R: Συνολικό εύρος διακύμανσης παρατηρήσεων

Πίνακας Κατανομής Συχνοτήτων

Boxplots