Find: σ’v at d=30 feet in [lb/ft2]

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Click here to start Important !: You have to enable macros for this game (Tools ->Macros -> Security -> «medium»).
Advertisements

Γειά σας. Say: take a pencil. Πάρε ένα μολύβι. Nick, give me my book.
Μεταφραστές Περιορισμένης Αναζήτησης. Bounded Solve % bounded_solve (Goal,Depth) – Ισχύει όταν ο στόχος Goal έχει απόδειξη βάθους μικρότερου ή ισου του.
Lesson 6c: Around the City I JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Lesson 1c: Basic words, common objects JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Lesson 1a: Let’s Get Started JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Lesson 1a: Let’s Get Started JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκπαιδευτικά Προγράμματα με Χρήση Η/Υ Ι ΘΕΩΡΙΕΣ ΜΑΘΗΣΗΣ ΚΑΙ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ (Learning Theories and.
Η σημασία της σχέσης παιδιού-περιβάλλοντος Είναι αποδεδειγμένο ότι τα παιδιά είναι ευαίσθητα απέναντι στο δομημένο χώρο. Οι διάφορες αρχιτεκτονικές μορφές.
302 ΑΣΑΚ – ΑΙΣΘΗΤΙΚΗ ΑΝΤΙΜΕΤΩΠΙΣΗ ΚΥΤΤΑΡΙΤΙΔΑΣ ΜΑΘΗΜΑ 3)
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ ΚΑΙ.
ΜΑΘΗΜΑ 9. ΒΑΣΙΚΕΣ ΧΡΗΣΕΙΣ ΤΩΝ ΑΙΘΕΡΙΩΝ ΕΛΑΙΩΝ (ΣΥΝΕΧΕΙΑ) ΠΟΡΤΟΚΑΛΙ. ΕΙΝΑΙ ΠΟΛΥ ΑΠΑΛΟ, ΓΕΓΟΝΟΣ ΠΟΥ ΤΟ ΚΑΝΕΙ ΜΙΑ ΚΑΛΗ ΕΠΙΛΟΓΗ ΓΙΑ ΠΑΙΔΙΑ ΚΑΙ ΟΠΟΙΟΝΔΗΠΟΤΕ.
Easter traditions. Easter Egg Hunt On Easter Sunday, children try to find hidden eggs in the gardens or at home. The child who finds the most eggs wins.
ΔΗΜΙΟΥΡΓΙΑ ΤΗΣ ΚΥΤΤΑΡΙΤΙΔΑΣ ΠΑΡΑΓΟΝΤΕΣ ΠΟΥ ΠΑΙΖΟΥΝ ΡΟΛΟ ΣΤΗΝ ΕΜΦΑΝΙΣΗ ΤΗΣ ΚΥΤΤΑΡΙΤΙΔΑΣ ΣΥΝΔΕΤΙΚΟΣ ΙΣΤΟΣ- ΚΑΚΗ ΚΥΚΛΟΦΟΡΙΑ ΤΟΥ ΑΙΜΑΤΟΣ ΚΑΙ ΤΗΣ ΛΕΜΦΟΥ -ΤΑ.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
Βασικές Έννοιες της Πληροφορικής
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Acts 4:34 – 5:11 God’s warning shot.
Κεφάλαιο 4 Βενζινομηχανές (4χρονες – 2χρονες)
Διάλεξε τη σωστή απάντηση
LOCATION.
Πως Διδάσκω Έννοιες, Φυσικά Μεγέθη, Νόμους
Αν. Καθηγητής Γεώργιος Ευθύμογλου
ΠρΟταση δημιουργΙασ ΦυσικΗς ΔιεπαφΗς
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
JSIS E 111: Elementary Modern Greek
Ἀκούω I listen, hear.
Ο τόπος μας… Το πολιτιστικό μας πάρκο ¨Αντώνης Τρίτσης¨
SANITARY AND STORM SEWER DESIGN A Direct Algebraic Solution
MAGIC BOOK 2 UNIT 1 kelly.
Example Rotary Motion Problems
Development of sample e-Hoop content
Επικοινωνία & Δημόσιες Σχέσεις στον Τουρισμό
Συμβουλές για ένα υγιές βάρος
ΥΓΙΕΙΝΗ ΚΑΙ ΑΣΦΑΛΕΙΑ ΣΤO Food and beverage department
Expression Home All In One Inkjet Printers
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
The area formula is related the size of the RADIUS of the circle
Find: angle of failure, α
Croy 8 - Exercises ὁ θεὸς ἀποστέλλει τοῦτον τὸν προφήτην εἰς τὸν λαόν.
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
THE END 1.
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: σ1 [kPa] for CD test at failure
Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]
Ευθύγραμμη Ομαλά Μεταβαλλόμενη Κίνηση
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
ΜΕΤΑΦΡΑΣΗ ‘ABC of Selling’. ΤΟ ΑΛΦΑΒΗΤΑΡΙ ΤΩΝ ΠΩΛΗΣΕΩΝ
Find: Force on culvert in [lb/ft]
Class IV Aorist Adverbial Participle © Dr. Esa Autero
Λέξεις που αλλάζουν νόημα αν είναι μετρήσιμα ή μη μετρήσιμα
We can manipulate simple equations:
3Ω 17 V A3 V3.
Find the total resistance of this network
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
Unit Circle.
4Ω 4Ω __Ω __Ω __Ω 12 V 4Ω 4Ω 4Ω __Ω __Ω __Ω 12 V 4Ω.
Deriving the equations of
ΚΤΙΡΙΑ ΓΡΑΦΕΙΩΝ - ΚΑΤΑΣΤΗΜΑΤΑ – ΧΩΡΟΙ ΣΥΝΑΘΡΟΙΣΗ ΚΟΙΝΟΥ - ΡΑΜΠΕΣ
2013 edition Wilfred E. Major
Δοκοί Διαγράμματα Τεμνουσών Δυνάμεων και Καμπτικών Ροπών
Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E
Find: ρc [in] from load (4 layers)
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
Verbs.
I have to take the MAP again?
Copy and paste function can then be applied
Ψυχοπαιδαγωγική του Αναδυόμενου Γραπτού Λόγου
Μεταγράφημα παρουσίασης:

Find: σ’v at d=30 feet in [lb/ft2] 1,438 1,957 C) 2,062 D) 3,310 d Sand 10 ft γT=100 [lb/ft3] Clay 40 ft wc=37% SG=2.70

Find: σ’v at d=30 feet in [lb/ft2] 1,438 1,957 C) 2,062 D) 3,310 d Sand 10 ft γT=100 [lb/ft3] 20 ft Clay 40 ft wc=37% SG=2.70

Find: σ’v at d=30 feet in [lb/ft2] 1,438 1,957 C) 2,062 D) 3,310 d Sand 10 ft γT=100 [lb/ft3] 20 ft Clay 40 ft wc=37% SG=2.70

Find: σ’v at d=30 feet in [lb/ft2] 1,438 1,957 C) 2,062 D) 3,310 d Sand 10 ft γT=100 [lb/ft3] 20 ft Clay 40 ft wc=37% SG=2.70

Find: σ’v at d=30 feet in [lb/ft2] 1,438 1,957 C) 2,062 D) 3,310 d Sand 10 ft γT=100 [lb/ft3] 20 ft Clay 40 ft wc=37% SG=2.70

Find: σ’v at d=30 feet in [lb/ft2] 1,438 1,957 C) 2,062 D) 3,310 d Sand 10 ft γT=100 [lb/ft3] 20 ft Clay 40 ft wc=37% SG=2.70 S=100%

Find: σ’v at d=30 feet in [lb/ft2] Sand 10 ft γT=100 [lb/ft3] 20 ft Clay 40 ft wc=37% SG=2.70 S=100%

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h d Sand 10 ft γT=100 [lb/ft3] 20 ft Clay 40 ft wc=37% SG=2.70 S=100%

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h σv’=Σ γ’*h d Sand 10 ft γT=100 [lb/ft3] 20 ft Clay 40 ft wc=37% SG=2.70 S=100%

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h σv’=Σ γ’*h d Sand 10 ft γT=100 [lb/ft3] 20 ft σv’=γ’sand*hsand +γ’clay * hclay Clay 40 ft wc=37% SG=2.70 S=100%

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h σv’=Σ γ’*h d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 20 ft σv’=γ’sand*hsand +γ’clay * hclay Clay 40 ft wc=37% SG=2.70 S=100%

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h σv’=Σ γ’*h d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft σv’=γ’sand*hsand +γ’clay * hclay Clay 40 ft wc=37% SG=2.70 S=100%

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h σv’=Σ γ’*h d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft σv’=γ’sand*hsand +γ’clay * hclay Clay 40 ft wc=37% SG=2.70 S=100% 20 [ft]

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h σv’=Σ γ’*h d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft σv’=γ’sand*hsand +γ’clay * hclay Clay 40 ft wc=37% SG=2.70 S=100% 20 [ft] ?

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h σv’=Σ γ’*h d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft σv’=γ’sand*hsand +γ’clay * hclay Clay 40 ft wc=37% SG=2.70 S=100% 20 [ft] ?

Find: σ’v at d=30 feet in [lb/ft2] γ’clay wc=37% SG=2.70 S=100% ?

Find: σ’v at d=30 feet in [lb/ft2] γ’clay= γT - γW wc=37% SG=2.70 S=100% ?

Find: σ’v at d=30 feet in [lb/ft2] γ’clay= γT - γW wc=37% SG=2.70 S=100% ?

Find: σ’v at d=30 feet in [lb/ft2] ? γ’clay= γT - γW wc=37% SG=2.70 S=100% ?

Find: σ’v at d=30 feet in [lb/ft2] ? γ’clay= γT - γW wc=37% SG=2.70 S=100% γT=WT VT ?

Find: σ’v at d=30 feet in [lb/ft2] ? γ’clay= γT - γW wc=37% SG=2.70 S=100% γT=WT VT ?

Find: σ’v at d=30 feet in [lb/ft2] ? γ’clay= γT - γW wc=37% SG=2.70 S=100% γT=WT VT ?

Find: σ’v at d=30 feet in [lb/ft2] ? γ’clay= γT - γW wc=37% SG=2.70 S=100% γT=WT VT ?

Find: σ’v at d=30 feet in [lb/ft2] W S V [ft3] W [lb] wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] W S V [ft3] W [lb] wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] W S V [ft3] W [lb] wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] W S V [ft3] W [lb] wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] W S V [ft3] W [lb] wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] W S V [ft3] W [lb] wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] wc=Ww Ws A W S V [ft3] W [lb] wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] wc=Ww Ws A W S V [ft3] W [lb] wc*Ws =Ww wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] wc=Ww Ws A W S V [ft3] W [lb] wc*Ws =Ww 0.37*Ws =Ww wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] wc=Ww Ws A W S V [ft3] W [lb] wc*Ws =Ww 0.37*Ws =Ww 100 [lb] wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] wc=Ww Ws A W S V [ft3] W [lb] wc*Ws =Ww 0.37*Ws =Ww 100 100 [lb] wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] wc=Ww Ws A W S V [ft3] W [lb] wc*Ws =Ww 0.37*Ws =Ww 100 100 [lb] 37 [lb] wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] wc=Ww Ws A W S V [ft3] W [lb] wc*Ws =Ww 37 0.37*Ws =Ww 100 100 [lb] 37 [lb] wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] wc=Ww Ws A W S V [ft3] W [lb] wc*Ws =Ww 37 0.37*Ws =Ww 100 100 [lb] 37 [lb] 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] W S V [ft3] W [lb] 37 100 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] Vw=Ww γW A W S V [ft3] W [lb] 37 100 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] Vw=Ww γW A W S V [ft3] W [lb] = 37 [lb] 62.4 [lb/ft3] 37 100 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] Vw=Ww γW A W S V [ft3] W [lb] = 37 [lb] 62.4 [lb/ft3] 37 100 = 0.593 [ft3] 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] Vw=Ww γW A W S V [ft3] W [lb] = 37 [lb] 62.4 [lb/ft3] 0.593 37 100 = 0.593 [ft3] 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] W S V [ft3] W [lb] 0.593 37 100 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS A W S V [ft3] W [lb] 0.593 37 100 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS A W S V [ft3] W [lb] 0.593 37 γW*SG 100 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 0.593 37 γW*SG 100 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 100 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 100 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 100 = 0.593 [ft3] 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 0.593 100 = 0.593 [ft3] 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 0.593 100 = 0.593 [ft3] 1.186 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 0.593 100 = 0.593 [ft3] 1.186 137 wc=37% SG=2.70 S=100% ? γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 0.593 100 = 0.593 [ft3] 1.186 137 γT=WT VT

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 0.593 100 = 0.593 [ft3] 1.186 137 γT=WT VT 137 [lb] 1.186 [ft3] = =

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 0.593 100 = 0.593 [ft3] 1.186 137 γT=WT VT 137 [lb] 1.186 [ft3] = = 115.5 [lb/ft3]

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 0.593 100 = 0.593 [ft3] assumed 1.186 137 γT=WT VT 137 [lb] 1.186 [ft3] = = 115.5 [lb/ft3]

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 0.593 100 = 0.593 [ft3] assumed 1.186 137 Followed from assumption γT=WT VT 137 [lb] 1.186 [ft3] = = 115.5 [lb/ft3]

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 0.593 100 = 0.593 [ft3] assumed 1.186 137 Followed from assumption γT=WT VT 137 [lb] 1.186 [ft3] = = 115.5 [lb/ft3]

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h σv’=Σ γ’*h 100 [lb/ft3] 10 [ft] σv’=γ’sand*hsand +γ’clay * hclay ? 20 [ft]

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h γ’clay= γT - γW σv’=Σ γ’*h 100 [lb/ft3] 10 [ft] σv’=γ’sand*hsand +γ’clay * hclay ? 20 [ft]

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h γ’clay= γT - γW σv’=Σ γ’*h 62.4 [lb/ft3] 100 [lb/ft3] 10 [ft] σv’=γ’sand*hsand +γ’clay * hclay ? 20 [ft]

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h γ’clay= γT - γW σv’=Σ γ’*h 62.4 [lb/ft3] 115.5 [lb/ft3] 100 [lb/ft3] 10 [ft] σv’=γ’sand*hsand +γ’clay * hclay ? 20 [ft]

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h γ’clay= γT - γW σv’=Σ γ’*h 62.4 [lb/ft3] 115.5 [lb/ft3] 100 [lb/ft3] 10 [ft] γ’clay= 53.1 [lb/ft3] σv’=γ’sand*hsand +γ’clay * hclay 20 [ft]

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h γ’clay= γT - γW σv’=Σ γ’*h 62.4 [lb/ft3] 115.5 [lb/ft3] 100 [lb/ft3] 10 [ft] γ’clay= 53.1 [lb/ft3] σv’=γ’sand*hsand +γ’clay * hclay 20 [ft]

Find: σ’v at d=30 feet in [lb/ft2] σv’=γ’*h γ’clay= γT - γW σv’=Σ γ’*h 62.4 [lb/ft3] 115.5 [lb/ft3] 100 [lb/ft3] 10 [ft] γ’clay= 53.1 [lb/ft3] σv’=γ’sand*hsand +γ’clay * hclay σv’=2,062 [lb/ft2] 20 [ft]

Find: σ’v at d=30 feet in [lb/ft2] 1,438 1,957 C) 2,062 D) 3,310 σv’=γ*h γ’clay= γT - γW σv’=Σ γ*h 62.4 [lb/ft3] 115.5 [lb/ft3] 100 [lb/ft3] 10 [ft] γ’clay= 53.1 [lb/ft3] σv’=γ’sand*hsand +γ’clay * hclay σv’=2,062 [lb/ft3] 20 [ft]

Find: σ’v at d=30 feet in [lb/ft2] 1,438 1,957 C) 2,062 D) 3,310 σv’=γ*h γ’clay= γT - γW σv’=Σ γ*h 62.4 [lb/ft3] 115.5 [lb/ft3] 100 [lb/ft3] 10 [ft] γ’clay= 53.1 [lb/ft3] σv’=γsand*hsand +γ’clay * hclay σv’=2,062 [lb/ft3] Answer  C 20 [ft]

Find: σ’v at d=30 feet in [lb/ft2] VS=WS γS WS γW*SG A W S V [ft3] W [lb] = 100 [lb] 62.4 [lb/ft3]*2.70 0.593 37 = 0.593 100 = 0.593 [lb] assumed 1.186 137 Followed from assumption γT=WT VT 137 [lb] 1.186 [ft3] = = 115.5 [lb/ft3]

Find: σ’v at d=30 feet in [lb/ft2] γT=WT VT 137 [lb] 1.186 [ft3] = = 115.5 [lb/ft3]

Find: σ’v at d=30 feet in [lb/ft2] (1+wc)*γw wc+(1/SG) γT= γT=WT VT 137 [lb] 1.186 [ft3] = = 115.5 [lb/ft3]

Find: σ’v at d=30 feet in [lb/ft2] 0.37 62.4 [lb/ft3] (1+wc)*γw wc+(1/SG) γT= 2.70 γT=WT VT 137 [lb] 1.186 [ft3] = = 115.5 [lb/ft3]

Find: σ’v at d=30 feet in [lb/ft2] 0.37 62.4 [lb/ft3] (1+wc)*γw wc+(1/SG) γT= 2.70 γT=115.5 [lb/ft3] γT=WT VT 137 [lb] 1.186 [ft3] = = 115.5 [lb/ft3]

? Index σ’v = Σ γ d γT=100 [lb/ft3] +γclay dclay 1 Find: σ’v at d = 30 feet σ’v = Σ γ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay Geostatic Stress problem 1. Find the effective vertical stress at a depth of 30 feet given the following figure. A 10 foot layer of sand with a total unit weight of 100 [lb/ft^3] overlays a 40 foot thick layer of clay with a water content of 37%. The ground water table exists at the sand – clay interface. The first time I saw this problem I thought, do I even have enough information to information to solve this problem. Image is not to scale. 40 ft text wc = 37% ? 20 [ft]