Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ."— Μεταγράφημα παρουσίασης:

1 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

2 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΣΤΟΧΟΙ: Με τη συμπλήρωση της ενότητας αυτής ο/η μαθητής/τρια πρέπει: 1. Να σχεδιάζει διάφορες απλές γεωμετρικές κατασκευές. 2. Να κατανοεί τη σημασία των γεωμετρικών κατασκευών για τη σχεδίαση κατασκευα- στικών σχεδίων. 3. Να σχεδιάζει με ακρίβεια, ακολουθώντας τους κανόνες της γραμμογραφίας.

3 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων σε διάφορες επιστήμες όπως την Αρχιτεκτονική, την Πολιτική Μηχανική, τη Μηχανολογία, την Ηλεκτρολογία κ.α. Στη συνέχεια δίνονται ασκήσεις με γεωμετρικές κατασκευές στις οποίες επεξηγείται η πορεία σχεδίασής τους. Μπορούμε να τις σχεδιάσουμε ανά τέσσερις ή έξι σε κάθε φύλλο σχεδίασης, αφού προηγουμένως το φύλλο σχεδίασης χωριστεί στα αντίστοιχα μέρη. Οι μαθητές θα ξεκινήσουν τη σχεδίαση στο σχολείο και θα ολοκληρώνουν τις ασκήσεις τους στο σπίτι.

4 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΕΥΘΕΙΑ Διχοτόμηση ευθύγραμμου τμήματος Δίνεται το ευθύγραμμο τμήμα ΑΒ. Με κέντρο το Α και ακτίνα μεγαλύ- τερη από το 1/2 του ΑΒ, περίπου ίση με τα 2/3 του ΑΒ χαράζουμε τόξο. Με την ίδια ακτίνα και κέντρο το Β χαράζουμε άλλο τόξο που τέμνει το προηγούμενο στα σημεία 1 και 2. Η ευθεία που περνά από τα σημεία 1 και 2 διχοτομεί το ΑΒ στο σημείο Ε.

5 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Διαίρεση ευθύγραμμου τμήματος σε ίσα μέρη Δίνεται το ευθύγραμμο τμήμα ΑΒ που θα διαιρεθεί σε 5 ίσα μέρη. Από το σημείο Α χαράζουμε βοηθητική ευθεία (ε) που σχηματίζει τυχαία γωνιά α με το ευθύγραμμο τμήμα ΑΒ. Ορίζουμε στην ευθεία (ε) 5 ίσα τμήματα, αρχίζοντας από το Α. Η ίδια διαδικασία μπορεί να γίνει αρχίζοντας από το σημείο Β. Ενώνουμε το τελευταίο σημείο της διαίρεσης το 5 με το Β. Χαράζουμε παράλληλες προς την 5Β οι οποίες να περνούν από τα σημεία 4, 3, 2, 1. Οι παράλληλες αυτές χωρίζουν το ΑΒ σε 5 ίσα μέρη τέμνοντάς το στα σημεία 4’ 3’ 2’ 1’.

6 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Χάραξη κάθετης ευθείας (β) σε σημείο Ο ευθείας (ε) Δίνεται η ευθεία (ε) και τυχαίο σημείο Ο πάνω σε αυτή. Με κέντρο το σημείο Ο και με τυχαία ακτίνα r χαράζουμε τόξο που τέμνει την ευθεία (ε) στα σημεία Κ και Λ. Με κέντρο τα σημεία Κ και Λ και τυχαία ακτίνα r1 χαράζουμε τόξα που τέμνονται στο Γ. Η ευθεία (β) είναι κάθετη στο (ε), στο σημείο Ο.

7 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Χάραξη κάθετης ευθείας (β) σε ευθεία (ε) από σημείο Ο έξω από αυτήν Δίνεται η ευθεία (ε) και τυχαίο σημείο Ο έξω από αυτήν. Με κέντρο το Ο και τυχαία ακτίνα r 1 χαράζουμε τόξο που τέμνει την (ε) στα σημεία Η και Θ. Με κέντρο τα σημεία Η και Θ και ακτίνα r 2 χαράζουμε τόξα που τέμνονται στο σημείο Γ. Η ευθεία (β) που περνά από τα σημεία Ο και Γ είναι κάθετη στην (ε).

8 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Χάραξη ευθείας παράλληλης με άλλη ευθεία, όταν δίνεται η μεταξύ τους απόσταση Δίνεται η ευθεία (ε1) και η απόσταση μεταξύ της ευθείας και της παράλληλής της. Με κέντρο δύο τυχαία σημεία πάνω στην ευθεία ε1 έστω Κ και Λ και με ακτίνα α χαράζουμε δύο τόξα. Χαράζουμε την ευθεία (ε2), ώστε να εφάπτεται στα δύο τόξα. Η ευθεία (ε2) είναι παράλληλη με την (ε1).

9 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Χάραξη ευθείας παράλληλης με άλλη ευθεία που περνά από γνωστό σημείο Δίνεται η ευθεία ε1 και το σημείο Μ έξω από αυτή. Με κέντρο το Μ και τυχαία ακτίνα R χαράζουμε τόξο ΚΝ, που τέμνει την ε1 στο σημείο Κ. Με κέντρο το Κ και την ίδια ακτίνα χαράζουμε άλλο τόξο, που τέμνει την (ε1) στο σημείο Λ. Με κέντρο το Κ και την ακτίνα r ίση με την απόσταση ΛΜ χαράζουμε τόξο που τέμνει το τόξο ΚΝ στο σημείο Π. Η ευθεία ε2 που περνά από τα σημεία Π και Μ είναι η παράλληλη με την ευθεία ε1.

10 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΓΩΝΙΑ Ορισμός: Γωνία ονομάζεται η περιστροφή ενός ευθύγραμμου τμήματος, έστω ΟΑ, το οποίο βρίσκεται πάνω σε ένα επίπεδο, γύρω από το Ο παραμένοντας στο ίδιο επίπεδο. Η γωνιά παίρνει τιμή α όταν κατά την περιστροφή του το ευθύγραμμο τμήμα σταματήσει σε μια νέα θέση, έστω Α’. Οι γωνίες περιέχονται μεταξύ δύο ευθειών με κοινή αρχή και συμβολίζονται με μικρά ελληνικά γράμματα (κυρίως α, β, γ) Μετριούνται συνήθως σε μοίρες.

11 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Χαρακτηρισμοί γωνιών Κάθε γωνία προσδιορίζεται από την κορυφή Α και τις πλευρές της. Οξεία γωνία α < 90 ˚ Αμβλεία γωνία α > 90 ˚ Ορθή γωνία α = 90 ˚

12 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Διχοτόμηση γωνίας Nα διχοτομηθεί η γωνία ΑΒΓ. Με κέντρο την κορυφή Β και τυχαία ακτίνα R χαράζουμε τόξο που τέμνει τις πλευρές της γωνίας στα σημεία Κ και Λ. Με κέντρο τα σημεία Κ και Λ και τυχαία ακτίνα R1 χαράζουμε τόξα που τέμνονται στο σημείο Μ. Χαράζουμε το ευθύγραμμο τμήμα ΜΒ που είναι η διχοτόμος της ευθείας ΑΒΓ.

13 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή γωνίας 60˚ Χαράζουμε ευθύγραμμο τμήμα ΑΒ. Με κέντρο το Α και τυχαία ακτίνα r, γράφουμε τόξο το οποίο τέμνει το ΑΒ στο Γ. Με κέντρο το Γ και την ίδια ακτίνα γράφουμε νέο τόξο το οποίο τέμνει το πρώτο στο σημείο Δ. Η γωνία μεταξύ των ΑΔ και ΑΒ είναι 60 ˚

14 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή γωνίας 45˚ Κατασκευάζουμε ορθή γωνία ΑΒΓ. Διχοτομούμε την ορθή γωνία, για να έχουμε γωνία 45 ˚

15 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Τριχοτόμηση ορθής γωνίας Να τριχοτομηθεί η ορθή γωνία ΒΑΓ. Με κέντρο το Α και τυχαία ακτίνα έστω R, χαράζουμε τόξο που τέμνει τις δύο πλευρές της γωνίας στα σημεία Κ και Λ. Με κέντρο τα σημεία Κ και Λ και με την ίδια ακτίνα R γράφουμε τόξα που τέμνουν το πρώτο στα σημεία Μ και Ν. Χαράζουμε τα ευθύγραμμα τμήματα ΑΜ και ΑΝ τα οποία διαιρούν τη γωνία ΒΑΓ σε τρεις ίσες γωνίες (30˚).

16 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΤΡΙΓΩΝΑ Ορισμός: Τρίγωνο ονομάζεται μια επιφάνεια ευθύγραμμα περιορισμένη από τρεις πλευρές α, β, γ και με τρεις γωνιές Α, Β, Γ.

17 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Είδη τριγώνων

18 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή τριγώνου, όταν δίνονται οι τρεις πλευρές του Δίνονται οι τρεις πλευρές α, β και γ. Χαράζουμε το ευθύγραμμο τμήμα ΑΒ = γ. Με κέντρο το σημείο Α και ακτίνα ίση με την πλευρά β χαράζουμε τόξο. Με κέντρο το σημείο Β και ακτίνα ίση με την πλευρά α χαράζουμε τόξο που τέμνει το προηγούμενο στο σημείο Γ. Χαράζουμε τα ευθύγραμμα τμήματα ΓΑ και ΓΒ. Το σχήμα ΑΒΓ είναι το ζητούμενο τρίγωνο.

19 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή τριγώνου, όταν δίνονται μια πλευρά και δύο γωνίες Δίνονται η πλευρά ΑΒ και οι δύο προσκείμενες γωνίες α και β. Χαράζουμε την πλευρά ΑΒ και κατασκευάζουμε τις προσκείμενες γωνίες α και β στα σημεία Α και Β αντίστοιχα. Οι πλευρές των δύο γωνιών τέμνο- νται στο σημείο Γ σχηματίζοντας το ζητούμενο τρίγωνο.

20 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή ισόπλευρου τριγώνου, όταν δίνεται το μήκος της μιας πλευράς Δίνεται η πλευρά ΑΒ. Χαράζουμε την πλευρά ΑΒ και με κέντρο τα σημεία Α και Β και ακτίνα ΑΒ χαράζουμε τόξα που να τέμνονται στο σημείο Γ. Χαράζουμε τα ευθύγραμμα τμήματα ΑΓ και ΒΓ και σχηματίζε- ται το ζητούμενο τρίγωνο.

21 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή ισοσκελούς τρι- γώνου, όταν δίνονται η βάση και το κατακόρυφο ύψος Δίνονται η βάση ΑΒ και το κατακό- ρυφο ύψος ΔΓ. Χαράζουμε τη βάση ΑΒ και τη διχοτομούμε. Χαράζουμε κάθετη στο σημείο Δ. Με κέντρο το σημείο Δ και ακτίνα το δοσμένο ύψος ΔΓ χαράζουμε τόξο το οποίο τέμνει την ΔΓ στο σημείο Γ. Χαράζουμε τα ευθύγραμμα τ μήματα ΑΓκαι ΒΓ και σχηματίζεται το ζητούμενο τρίγωνο ΑΒΓ.

22 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή τριγώνου με αναλογία πλευρών 3:4:5 Χαράζουμε τη βάση ΒΓ ώστε να έχει μήκος 3 μονάδες μήκους. Με κέντρο το σημείο Β και ακτίνα ίση με 5 μονάδες μήκους χαράζουμε τόξο. Με κέντρο το σημείο Γ και ακτίνα ίση με 4 μονάδες μήκους χαράζουμε τόξο ώστε να τέμνει το προηγούμενο στο σημείο Α. Χαράζουμε τα ευθύγραμμα τμή- ματα ΒΑ και ΓΑ και σχηματίζεται το ζητούμενο τρίγωνο ΑΒΓ.

23 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΤΕΤΡΑΠΛΕΥΡΑ Ορισμός: Τετράπλευρο ονομάζεται οποιαδήποτε επιφάνεια, ευθύγραμμα περιορισμένη από τέσσερις πλευρές.

24 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Είδη τετραπλεύρων 1.Τετράγωνο: έχει όλες τις πλευρές ίσες και όλες τις γωνιές ίσες. 2.Ορθογώνιο: έχει τις απέναντι πλευρές ίσες και παράλληλες και όλες τις γωνίες ορθές. 3.Ρόμβος: έχει όλες τις πλευρές ίσες, τις απέναντι πλευρές παράλληλες και τις απέναντι γωνίες ίσες. 4.Παραλληλόγραμμο: έχει τις απέναντι πλευρές ίσες και παράλληλες και τις απέναντι γωνίες ίσες. 5.Τραπέζιο: έχει τι δύο απέναντι πλευρές παράλληλες. 6.Ακανόνιστο τετράπλευρο: κάθε πλευρά έχει διαφορετικό μήκος και οι γωνιές έχουν διαφορετικό μέγεθος.

25 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Kατασκευή τετραγώνου, όταν δίνεται μια πλευρά Χαράζουμε ευθύγραμμο τμήμα ΑΒ ίσο με τη δοθείσα πλευρά. Χαράζουμε ευθεία ε κάθετη στο ευθύγραμμο τμήμα ΑΒ στο σημείο Α. Με κέντρο το Α και ακτίνα R = ΑΒ χαράζουμε τόξο το οποίο τέμνει την κάθετη, στο σημείο Δ. Με κέντρο τα σημεία Β και Δ και με την ίδια ακτίνα R χαράζουμε τόξα που τέμνονται στο Γ. Χαράζοντας τα ευθύγραμμα τμήματα ΓΔ και ΓΒ, σχηματίζεται το τετράγωνο ΑΒΓΔ.

26 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Kατασκευή ορθογωνίου, όταν δίνονται τα μήκη των πλευρών Χαράζουμε το ευθύγραμμο τμήμα ΑΒ ίσο με τη δοθείσα πλευρά (α). Χαράζουμε ευθεία ε κάθετη στο ΑΒ, στο σημείο Α. Με κέντρο το Α και ακτίνα R 1 ίση με την άλλη πλευρά β, χαράζουμε τόξο το οποίο τέμνει την κάθετη ευθεία ε στο σημείο Δ. Με κέντρο το Δ και ακτίνα R 2 = α, χαράζουμε τόξο. Με κέντρο το Β και ακτίνα R 1 = β, χαράζουμε τόξο το οποίο τέμνει το προηγούμενο στο σημείο Γ. Χαράζοντας τα ευθύγραμμα τμήματα ΓΔ και ΓΒ, σχηματίζεται το ορθογώνιο ΑΒΓΔ.

27 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Kατασκευή ρόμβου, όταν δίνεται η πλευρά ΑΒ και μια γωνία Χαράζουμε ευθύγραμμο τμήμα ίσο με τη δοθείσα πλευρά ΑΒ. Στο σημείο Α κατασκευάζουμε γωνία α ίση με τη δοθείσα γωνία. Με κέντρο το Α και ακτίνα R = ΑΒ χαράζουμε τόξο το οποίο τέμνει την ευθεία ε στο σημείο Δ. Με κέντρο τα σημεία Δ και Β και ακτίνα R = ΑΒ, χαράζουμε τόξα που τέμνονται στο σημείο Γ. Χαράζοντας τα ευθύγραμμα τμήματα ΓΔ και ΓΒ, σχηματίζεται ο ρόμβος ΑΒΓΔ.

28 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Kατασκευή παραλληλογράμμου, όταν δίνεται η πλευρά ΑΒ, η γωνία β και η απόσταση γ της παράλληλης πλευράς από την ΑΒ Χαράζουμε ευθύγραμμο τμήμα ίσο με τη δοθείσα πλευρά ΑΒ. Στο σημείο Β κατασκευάζουμε γωνία β ίση με τη δοθείσα γωνία. Χαράζουμε παράλληλη προς την ΑΒ, σε απόσταση γ, η οποία τέμνει την ευθεία (ε) στο σημείο Γ. Η παράλληλη με την (ε) που περνά από το Α τέμνει την παράλληλη του ΑΒ στο σημείο Δ. Το σχήμα ΑΒΓΔ είναι το ζητούμενο παραλληλόγραμμο.

29 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Kατασκευή τραπεζίου, όταν δίνονται τρεις πλευρές ΑΒ, ΒΓ, ΓΔ και η γωνία β Χαράζουμε ευθύγραμμο τμήμα ίσο με τη δοθείσα πλευρά ΑΒ. Στο σημείο Β κατασκευάζουμε γωνία β ίση με τη δοθείσα. Με κέντρο το σημείο Β και ακτίνα τη δοθείσα πλευρά ΒΓ χαράζουμε τόξο το οποίο τέμνει την ευθεία (ε) στο σημείο Γ. Χαράζουμε ευθεία ε 1 παράλληλη με την ΑΒ και ορίζουμε ευθύγραμμο τμήμα ΓΔ ίσο με τη δοθείσα πλευρά. Το σχήμα ΑΒΓΔ είναι το ζητούμενο παραλληλόγραμμο.

30 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΠΟΛΥΓΩΝΑ Ορισμός: Κανονικό πολύγωνο ονομάζεται οποιαδήποτε επιφάνεια περιορισμένη από ένα αριθμό ίσων ευθύγραμμων τμημάτων τα οποία μεταξύ τους σχηματίζουν ίσες γωνιές. Τα πολύγωνα παίρνουν την ονομασία τους από τον αριθμό των γωνιών τους (τετράγωνο, πεντάγωνο, εξάγωνο κ.τ.λ.) Οι εσωτερικές γωνιές των πολυγώνων που σχηματίζονται στο κέντρο έχουν άθροισμα 360 ˚. Η εσωτερική γωνιά του πολυγώνου υπολογίζεται διαιρώντας τη γωνιά των 360 ˚ με τον αριθμό των πλευρών του πολυγώνου.

31 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού πενταγώνου όταν δίνεται η πλευρά του Χαράζουμε ευθύγραμμο τμήμα ΑΒίσο με τη δοθείσα πλευρά. Διχοτομούμε το ΑΒ. Ορίζουμε πάνω στη διχοτόμο, απόσταση ΟΚ = ΑΒ. Ορίζουμε πάνω στην προέκταση της ΑΚ απόσταση ΚΛ = ΑΟ. Με κέντρο το Α και την ακτίνα R 3 = ΑΛ χαράζουμε τόξο το οποίο τέμνει τη διχοτόμο στο σημείο Δ. Με κέντρο τα τρία σημεία Α, Β, Δ και ακτίνα ΑΒ χαράζουμε τόξα των οποίων οι τομές προσδιορίζουν τις κορυφές Ε και Γ ου πενταγώνου. Ενώνοντας τα σημεία Α, Ε, Δ, Γ, Β σχηματίζεται το πεντάγωνο.

32 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού πενταγώνου όταν δίνεται η πλευρά του (2 η μέθοδος) Χαράζουμε το ευθύγραμμο τμήμα ΑΒ ίσο με τη δοθείσα πλευρά. Με κέντρο τα σημεία Α και Β και ακτίνα R = ΑΒ χαράζουμε περιφέρειεςκύκλων, οι οποίες τέμνονται στα σημεία Γ και Δ. Ενώνουμε τα σημεία Γ και Δ. Με κέντρο το Δ και ακτίνα R = ΑΒ χαράζουμε άλλη περιφέρεια κύκλου η οποία τέμνει τις δύο προηγούμενες στα σημεία Ε και Ζ και το ευθύγραμμο τμήμα ΓΔ στο Ο.

33 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού πενταγώνου όταν δίνεται η πλευρά του (2 η μέθοδος) (συνέχεια) Ενώνουμε τα σημεία Ε και Ζ με το Ο και προεκτείνουμε τις ευθείες μέχρι να συναντήσουν τις δύο περιφέρειες στα σημεία Η και Θ. Με κέντρο τα σημεία Η και Θ και ακτίνα R = AB χαράζουμε τόξα τα οποία τέμνονται στο Κ. Ενώνοντας τα σημεία Β, Θ, Κ, Η, Α σχηματίζεται το πεντάγωνο.

34 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού πενταγώνου εγγεγραμμένου σε κύκλο Δίνεται ο κύκλος με κέντρο Ο και ακτίνα R. Χαράζουμε δύο διαμέτρους κάθετες μεταξύ τους, την ΑΒ και ΓΔ. Διχοτομούμε το ΑΟ και ορίζουμε το μέσο Μ. Με κέντρο το Μ και ακτίνα το ΜΓ χαράζουμε τόξο το οποίο τέμνει το ΟΒ στο σημείο Κ. Με κέντρο το Γ και ακτίνα το ΓΚ χαράζουμε τόξο που τέμνει την περιφέρεια του κύκλου στο σημείο Ε. Το ευθύγραμμο τμήμα ΓΕ είναι η ζητούμενη πλευρά του πενταγώνου.

35 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού πενταγώνου εγγεγραμμένου σε κύκλο (συνέχεια) Με τη βοήθεια του διαβήτη ορίζουμε τις υπόλοιπες κορυφές του πενταγώνου, δηλαδή τα σημεία Ζ, Η, Θ. Ενώνοντας τα σημεία Γ, Ε, Ζ, Η και Θ σχηματίζεται το πεντάγωνο.

36 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού εξαγώνου όταν δίνεται η πλευρά του Χαράζουμε ευθύγραμμο τμήμα ΑΒ ίσο με τη δοθείσα πλευρά. Με κέντρο τα σημεία Α και Β και ακτίνα ΑΒ χαράζουμε τόξα που τέμνονται στο Ο. Με κέντρο το Ο και με ακτίνα το ΟΑ χαράζουμε περιφέρεια κύκλου η οποία περνά από τα σημεία Α και Β. Με κέντρο τα σημεία Α και Β και ακτίνα ΑΒ χαράζουμε τόξα που τέμνουν την περιφέρεια του κύκλου στα σημεία Ζ και Γ αντίστοιχα. Με κέντρο τα σημεία Ζ και Γ και την ίδια ακτίνα χαράζουμε τόξα που τέμνουν την περιφέρεια στα σημεία Ε και Δ αντίστοιχα. Ενώνοντας τα σημεία Α, Ζ, Ε, Δ, Γ και Β σχηματίζεται το εξάγωνο.

37 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού εξαγώνου εγγεγραμμένου σε κύκλο ακτίνας R Χαράζουμε κύκλο με κέντρο Ο και με ακτίνα R ίσα με τη δοθείσα. Χαράζουμε τη διάμετρο ΑΒ.Με κέντρο τα σημεία Α και Β και ακτίνα R χαράζουμε τόξα τα οποία τέμνουν την περιφέρεια του κύκλου στα σημεία Γ, Δ και Ε, Ζ αντίστοιχα. Ενώνοντας τα σημεία Α, Γ, Ε, Β, Ζ, Δ, σχηματίζεται το ζητούμενο εξάγωνο

38 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού οκταγώνου εγγεγραμ- μένου σε τετράγωνο με δοσμένη πλευρά Κατασκευάζουμε το τετράγωνο ΑΒΓΔ με δοσμένη πλευρά ΑΒ. Προσδιορίζουμε το κέντρο Ο του τετραγώνου. Με κέντρο τα σημεία Α, Β, Γ, Δ και ακτίνα ΟΑ ίση με το ½ της διαγωνίου χαράζουμε τόξα που τέμνουν τις πλευρές στα σημεία 1 και 4, 6 και 3, 8 και 5, 7 και 2 αντίστοιχα. Ενώνοντας τα σημεία 1, 2, 3, 4, 5, 6, 7, 8, 1 σχηματίζεται οκτάγωνο.

39 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού πολυγώνου όταν δίνεται η πλευρά του (Γενική μέθοδος) Χαράζουμε την πλευρά ΑΒ. Προεκτείνουμε το ευθύγραμμο τμήμα ΑΒ προς το Β. Με κέντρο το Β και με ακτίνα το ΑΒ χαράζουμε ημιπεριφέρεια. Διαιρούμε την ημιπεριφέρεια σε όσα ίσα μέρη όσες είναι οι πλευρές του πολυγώνου που θέλουμε να κατασκευάσουμε και αριθμούμε τα σημεία, όπως φαίνεται στο σχήμα. Στην περίπτωσή μας, εννέα. Χαράζουμε το ευθύγραμμο τμήμα Β2.

40 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού πολυγώνου όταν δίνε- ται η πλευρά του (Γενική μέθοδος) (συνέχεια) Διχοτομούμε το ΑΒ και το Β2. Οι διχοτόμοι τέμνονται στο σημείο Κ, το οποίο είναι το κέντρο του περιγεγραμμένου κύκλου. Με κέντρο το Κ και ακτίνα ΑΚ χαράζουμε περιφέρεια κύκλου. Με τη βοήθεια του διαβήτη ορίζουμε στην περιφέρεια του κύκλου τις κορυφές του πολυγώνου. Ενώνοντας τα σημεία Γ, Δ, Ε, Ζ, Η, Θ, Ι, Α σχηματίζεται το εννιάγωνο.

41 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού πολυγώνου όταν δίνεται η πλευρά του (Σε κοινή βάση) Χαράζουμε την πλευρά ΑΒ και τη διχοτομούμε. Κατασκευάζουμε τετράγωνο ΑΒΓΔ και χαράζουμε τη διαγώ- νιο ΑΓ. Η διαγώνιος τέμνει τη διχοτόμο ΕΖ στο σημείο 4. Με κέντρο το Α και ακτίνα ΑΒ χαράζουμε τόξο το οποίο τέμνει τη διχοτόμο ΕΖ στο σημείο 6. Διχοτομούμε το ευθύγραμμο τμήμα 4-6 και ορίζουμε το μέσο του (σημείο 5).

42 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού πολυγώνου όταν δίνε- ται η πλευρά του (Σε κοινή βάση) (συνέχεια) Με τη βοήθεια του διαβήτη ορίζουμε σημεία 7, 8, 9 πάνω στη διχοτόμο ΕΖ της πλευράς ΑΒ που απέχουν μεταξύ τους απόσταση ίση με το ευθύγραμμο τμήμα 4-5. Τα σημεία 4, 5, 6, 7, 8, 9... είναι τα κέντρα των κύκλων που είναι περιγεγραμμένοι στα αντίστοιχα πολύγωνα και έχουν ακτίνες 4Α, 5Α, 6Α, 7Α, 8Α, 9Α.

43 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού πολυγώνου εγγεγραμ- μένου σε κύκλο με δοσμένη διάμετρο Χαράζουμε περιφέρεια κύκλου με κέντρο Ο και με διάμετρο ΑΒ ίση με τη δοθείσα. Με κέντρο τα σημεία Α και Β και ακτίνα ίση με την ΑΒ χαράζουμε τόξα που τέμνονται στα σημεία Γ και Δ. Διαιρούμε το ευθύγραμμο τμήμα σε τόσα ίσα μέρη όσες και οι πλευρές του πολυγώνου που θέλουμε να κατασκευάσουμε. Για παράδειγμα, σε 8 ίσα μέρη για την κατασκευή οκταγώνου.

44 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Κατασκευή κανονικού πολυγώνου εγγεγραμμέ- νου σε κύκλο με δοσμένη διάμετρο (συνεχεια) Ενώνουμε το σημείο Γ με τα σημεία 1, 3, 5, 7 και προεκτεί- νουμε τις ευθείες, ώστε να τέμνουν την περιφέρεια του κύκλου, στα σημεία Ε, Ζ, Η, Θ. Με τον ίδιο τρόπο ορίζονται τα σημεία Ι, Κ, Λ, Μ από τις προεκτάσεις των ευθειών που περνούν από το σημείο Δ. Ενώνοντας τα σημεία Ε, Ζ, Η, Θ, Ι, Κ, Λ, Μ σχηματίζεται το οκτάγωνο.

45 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΕΦΑΠΤΟΜΕΝΕΣ Ορισμός : Αν ένας δίσκος είναι όρθιος πάνω σε μια επίπεδη επιφάνεια, τότε η επιφάνεια και ο δίσκος θα εφάπτονται σε ένα σημείο. Το σημείο είναι γνωστό ως σημείο επαφής και η ευθεία που αντιπροσωπεύει την επίπεδη επιφάνεια είναι γνωστή ως εφαπτομένη.

46 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Χάραξη εφαπτομένης σε σημείο Α περιφέρειας κύκλου Δίνεται κύκλος με κέντρο Ο, ακτίνα R και σημείο Α στην περιφέρειά του. Χαράζουμε το ευθύγραμμο τμήμα ΟΑ και το προεκτείνουμε σε απόσταση ΑΒ = ΟΑ. Η διχοτόμος του ΟΒ είναι η εφαπτόμένη της περιφέρειας στο σημείο Α.

47 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Χάραξη εφαπτομένης σε κύκλο από οποιοδήποτε σημείο Α εκτός κύκλου Δίνεται κύκλος με κέντρο Ο, ακτίνα R και σημείο Α εκτός περιφέρειάς του. Χαράζουμε το ευθύγραμμο τμήμα ΟΑ, το διχοτομούμε και ορίζουμε το μέσο Β. Με κέντρο το σημείο Β και ακτίνα ΒΑ χαράζουμε ημιπερι- φέρεια κύκλου η οποία τέμνει τον κύκλο στο σημείο Γ. Η ευθεία ΑΓ είναι η ζητούμενη εφαπτομένη.

48 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Χάραξη εξωτερικών εφαπτομένων δύο άνισων κύκλων Χαράζουμε δύο περιφέρειες κύκλων με κέντρο Ο 1 και ακτίνα R 1 και με κέντρο Ο 2 και ακτίνα R 2. Mε κέντρο το Ο 1 και ακτίνα R 3 = R 1 - R 2 χαράζουμε περιφέρεια κύκλου. Διχοτομώντας την απόσταση Ο 1 Ο 2 ορίζουμε το μέσο Κ. Με κέντρο το Κ και ακτίνα R 4 = ΚΟ 1 χαράζουμε περιφέ- ρεια η οποία τέμνει την περι- φέρεια (Ο 1, R 3 ) στα σημεία Α και Β.

49 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Χάραξη εξωτερικών εφαπτομένων δύο άνισων κύκλων (συνέχεια) Οι προεκτάσεις των Ο 1 Α και Ο 1 Β τέμνουν την περιφέρεια (Ο 1, R 1 ) στα σημεία Γ και Δ αντίστοιχα. Από το κέντρο Ο 2 χαράζουμε τις παράλληλες με την Ο 1 Γ και Ο 1 Δ οι οποίες τέμνουν την περιφέρεια (Ο2, R2) στα σημεία Ε και Ζ αντίστοιχα. Οι ευθείες που περνούν από τα σημεία Γ, Ε και Γ, Ζ είναι οι ζητούμενες εφαπτομένες

50 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Χάραξη εσωτερικών εφαπτομένων δύο άνισων κύκλων Δίνονται δύο κύκλοι με ακτίνες R 1 και R 2 και κέντρα Ο 1 και Ο 2 αντίστοιχα. Διχοτομούμε την απόσταση Ο 1 Ο 2 και ορίζουμε το μέσο Κ. Με κέντρο το Κ και ακτίνα ΚΟ 1 χαράζουμε περιφέρεια κύκλου, η οποία περνά από τα σημεία Ο 1 και Ο 2. Με κέντρο το Ο 1 και ακτίνα R 3 ίση με (R 1 + R 2 ) χαράζουμε περιφέρεια κύκλου που τέμνει την προηγούμενη στα σημεία Λ και Μ.

51 ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ Χάραξη εσωτερικών εφαπτομένων δύο άνισων κύκλων (συνέχεια) Τα ευθύγραμμα τμήματα ΛΟ 1 και ΜΟ 1 τέμνουν την περιφέρεια (Ο 1, R 1 ) στα σημεία 1 και 2 αντίστοιχα. Η παράλληλη της ΛΟ 1 που περνά από το κέντρο Ο 2 της περιφέρειας (Ο 2, R 2 ) τέμνει την περιφέρεια στο σημείο 3. Η παράλληλη της ΜΟ 1 που περνά από το κέντρο Ο 2 της περιφέρειας (Ο 2, R 2 ) τέμνει την περιφέρεια στο σημείο 4. Οι ευθείες που περνούν από τα σημεία 1, 3 και 2, 4 είναι οι αντί- στοιχες ζητούμενες εφαπτομένες.


Κατέβασμα ppt "ΔΙΕΥΘΥΝΣΗ ΜΕΣΗΣ ΤΕΧΝΙΚΗΣ ΚΑΙ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΚΛΑΔΟΣ ΠΟΛΙΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΑΡΧΙΤΕΚΤΟΝΙΚΗΣ-ΚΑΛΛΙΤΕΧΝΙΚΩΝ ΣΠΟΥΔΩΝ ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google