Π ΑΝΕΠΙΣΤΗΜΙΟ Δ ΥΤΙΚΗΣ Μ ΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Θεωρία Σημάτων και Συστημάτων 2013 Μάθημα 3 ο Δ. Γ. Τσαλικάκης.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Πιθανότητες & Τυχαία Σήματα
Advertisements

Πιθανότητες & Τυχαία Σήματα
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΧΩΡΟΣ ΚΑΤΑΣΤΑΣΗΣ.
Πιθανότητες & Τυχαία Σήματα
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ. Ε. Ι
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z.
Περιγραφή Σημάτων Συνεχούς Χρόνου
ΓΡΗΓΟΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Laplace.
ΚΕΦΑΛΑΙΟ 2 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
Δισδιάστατα Σήματα και Συστήματα #1
Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
Κύκλωμα RLC Ζαχαριάδου Κατερίνα ΤΕΙ ΠΕΙΡΑΙΑ.
Σήματα και φασματικές μέθοδοι στη γεωπληροφορική Ηλίας Τζιαβός 2014/2015ΑΠΘ/ΤΑΤΜ Τομέας Γεωδαισίας και Τοπογραφίας 3 ο Εξάμηνο Σήματα και Φασματικές Μέθοδοι.
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 7
Σήματα και Φασματικές Μέθοδοι στη Γεωπληροφορική
Εισαγωγή στην Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
Γ΄ κατεύθυνση Προβληματισμοί για τους ορισμούς, θεωρήματα, παραδείγματα και τις ασκήσεις του 3ου κεφαλαίου
ΜΟΝΤΕΛΑ ΠΕΠΕΡΑΣΜΕΝΩΝ ΔΙΑΦΟΡΩΝ & ΠΑΡΑΓΩΓΩΝ
Ο Μετασχηματισμός Laplace και ο Μετασχηματισμός Ζ
Ευστάθεια Συστημάτων Αυτομάτου Ελέγχου:
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
Βασικά Στοιχεία Ψηφιακής Επεξεργασίας Σήματος (ΙΙ)
Βασικά Στοιχεία Ψηφιακής Επεξεργασίας Σήματος (ΙΙI)
ΗΥ231 – Εισαγωγή στην Ηλεκτρονική
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
Επίλυση Διακριτών Γραμμικών Συστημάτων Νικόλαος Καραμπετάκης Επίκουρος Καθηγητής Τμήμα Μαθηματικών, Α.Π.Θ.
Ενότητα : Απόκριση Συχνότητας (Frequency Response)
Βασικά Στοιχεία Ψηφιακής Επεξεργασίας Σήματος (V).
Θεωρία Σημάτων και Συστημάτων
Μετασχηματισμός Fourier
Μετασχηματισμός Fourier
Μετασχηματισμός Fourier Διακριτού Χρόνου Δειγματοληψία
Σηματα και Συστηματα Χρήστος Μιχαλακέλης, PhD Λέκτορας
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 6η Φίλτρα.
Σήματα και Συστήματα Σήματα και Συστήματα Διακριτού Χρόνου Μετασχηματισμός Ζ Χαροκόπειο Πανεπιστήμιο Τμήμα Πληροφορικής και Τηλεματικής Χρήστος Μιχαλακέλης,
Σήματα και Συστήματα ΙΙ Διάλεξη: Εβδομάδα Καθηγητής Πέτρος Γρουμπός Επιμέλεια παρουσίασης: Βασιλική Μπουγά 1.
Ενότητα 2 η Σήματα και Συστήματα. Σήματα Γενικά η πληροφορία αποτυπώνεται και μεταφέρεται με την βοήθεια των σημάτων. Ως σήμα ορίζουμε την οποιαδήποτε.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
Μεταβατική απόκριση ενός συστήματος δεύτερης τάξης Σχήμα 5.7 σελίδα 370.
ΗΛΕΚΤΡΙΚΕΣ ΜΕΤΡΗΣΕΙΣ ΣΦΑΛΜΑΤΑ ΜΕΤΡΗΣΗΣ.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 3η Μετασχηματισμός Fourier.
Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #4: Μαθηματική εξομοίωση συστημάτων στο επίπεδο της συχνότητας – Μετασχηματισμός Laplace και εφαρμογές σε ηλεκτρικά.
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 4η Δειγματοληψία.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 8 η Διάλεξη ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΧΡΗΣΗΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΤΩΝ ΡΙΖΩΝ Το σύστημα ελέγχου.
Συστήματα Αυτομάτου Ελέγχου ΙΙ
ΜΕΘΟΔΟΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
Θεωρία Σημάτων και Συστημάτων 2013
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II
ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Θεωρία Σημάτων: ανάλυση στο χρονικό και στο φασματικό πεδίο Fourier Transform ενεργειακών σημάτων Σειρά Fourier για περιοδικά σήματα.
Hλεκτρικά Κυκλώματα 4η Διάλεξη.
ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Θεωρία Σημάτων: ανάλυση στο χρονικό και στο φασματικό πεδίο Θεωρία Γραμμικών Συστημάτων Συνεχής συνέλιξη (Continuous convolution) Διακριτού.
Η Έννοια της τυχαίας Διαδικασίας
ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ Οι μετασχηματιστές είναι ηλεκτρικές διατάξεις που μετατρέπουν (μετασχηματίζουν) την εναλλασσόμενη ηλεκτρική ενέργεια ενός επιπέδου τάσης.
ΜΠΣ ΠΡΑΣΙΝΗ ΕΝΕΡΓΕΙΑ ΤΜΗΜΑ ΗΜ&ΤΥ
O Θόρυβος στα Συστήματα Τηλεπικοινωνιών
Η Έννοια της τυχαίας Διαδικασίας
ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΓΡΑΜΜΑΤΩΝ BODE ΜΕΤΡΟΥ ΚΑΙ ΦΑΣΗΣ
Μετασχηματισμός Laplace και φίλτρα
Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
Επαναληπτικές ασκήσεις
Δισδιάστατα Σήματα και Συστήματα #1
ΙΣΧΥΣ ΚΑΙ ΕΝΕΡΓΕΙΑ ΣΤΟ ΕΝΑΛΛΑΣΣΟΜΕΝΟ ΡΕΥΜΑ
Σεραφείμ Καραμπογιάς Τι είναι σήμα;
Περιγραφή: Ενισχυτής audio με το LM358
Μεταγράφημα παρουσίασης:

Π ΑΝΕΠΙΣΤΗΜΙΟ Δ ΥΤΙΚΗΣ Μ ΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Θεωρία Σημάτων και Συστημάτων 2013 Μάθημα 3 ο Δ. Γ. Τσαλικάκης

Περίληψη Ευστάθεια Συστημάτων Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις Απλής Συχνότητας Περιοδικά Σήματα Συνεχούς Χρόνου

Σύστημα 3

4

Γραμμικά Συστήματα 5

Ευστάθεια Συστήματος

Ευστάθεια Συστημάτων Η έννοια της ευστάθειας ενός συστήματος είναι κεντρικής σημασίας στη Θεωρία Συστημάτων. Στην ουσία, η απαίτησή μας για ευστάθεια ενός συστήματος ταυτίζεται με την απαίτηση, τα εμπλεκόμενα σήματα να παραμένουν πεπερασμένα σε πλάτος. Υπάρχουν περισσότεροι του ενός ορισμοί της ευστάθειας. θα ορίσουμε την λεγόμενη ευστάθεια φραγμένης εισόδου φραγμένης εξόδου (ΦΕΦΕ) (bounded input bounded output (BIBO)).

h(t) x(t)y(t) Δηλαδή, η κρουστική του απόκριση να είναι απόλυτα ολοκληρώσιμη. Δηλαδή, η κρουστική του απόκριση να είναι απόλυτα ολοκληρώσιμη. Ικανή και αναγκαία συνθήκη Ευστάθεια Συστημάτων

Παράδειγμα 1 ο 9 ΓΡΑΜΜΙΚΟ

10 Παράδειγμα 2 ο

Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις Απλής Συχνότητας Το ζητούμενο στο παρόν εδάφιο είναι ο υπολογισμός του σήματος εξόδου όταν η είσοδος του συστήματος είναι το μιγαδικό εκθετικό σήμα απλής συχνότητας: Η έξοδος δίνεται από την Έστω ένα ΓΧΑ σύστημα με κρουστική απόκριση h(t).

Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις Απλής Συχνότητας ή όπου H(Ω 0 ) η ανεξάρτητη του χρόνου (μιγαδική) ποσότητα διαφορετικό πλάτος και φάση. Πράγματι η μιγαδική ποσότητα Η(Ω 0 ) γράφεται ως Με άλλα λόγια, το σήμα στην έξοδο είναι το περιοδικό σήμα αλλά με (1) όπου |Η(Ω 0 )| το μέτρο και φ(Ω 0 ) η φάση, που εξαρτώνται προφανώς από τη (2)

Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις Απλής Συχνότητας Το πλάτος, δηλαδή, της εξόδου είναι Α|Η(Ω 0 )| και η φάση του είναι μετατοπισμένη κατά φ(Ω 0 ) σε σχέση μ’ αυτή του σήματος εισόδου. Όπως θα δούμε στο επόμενο κεφάλαιο, η Η(Ω 0 ) δεν είναι τίποτε άλλο από ένα μαθηματικό μετασχηματισμό (που δρα πάνω στη συνάρτηση h(t) και δίνει μία άλλη συνάρτηση Η(Ω 0 ) ) υπολογισμένο στην τιμή Ω=Ω 0.

Απόκριση ΓΧΑ Συστημάτων σε Διεγέρσεις Απλής Συχνότητας Η ιδιαιτερότητα αυτή των ΓΧΑ συστημάτων καθιστά τα μαθηματικά εργαλεία που θ’ αναπτύξουμε στα επόμενα κεφάλαια ιδιαίτερα εύχρηστα για μελέτη τέτοιων συστημάτων. Συγκεκριμένα, θα μελετήσουμε τρόπους περιγραφής ενός σήματος ως υπέρθεση σημάτων απλών συχνοτήτων. Έτσι η έξοδος του ΓΧΑ συστήματος θα είναι η υπέρθεση των ίδιων αυτών σημάτων, έχοντας βέβαια υποστεί την αλλαγή που επιβάλει το σύστημα στο πλάτος και φάση του κάθε σήματος χωριστά, ανάλογα με τη συχνότητά του.

Ενέργεια και Ισχύς Σήματος Υποθέτουμε ότι υ(t) είναι η τάση στα άκρα μίας αντίστασης, η οποία έχει τιμή R=1Ω. Είναι γνωστό ότι η στιγμιαία ισχύς Ρ(t) που καταναλώνεται στην (ωμική) αντίσταση R είναι: Η τάση υ(t) στα άκρα της αντίστασης αυτής είναι, γενικά, χρονικά μεταβαλλόμενη, δηλαδή είναι ένα σήμα συνεχούς χρόνου x(t). Με βάση την περίπτωση αυτή, ορίζεται η στιγμιαία ισχύς P x (t) του σήματος x(t) από τη σχέση:

Ενέργεια και Ισχύς Σήματος

Αν η ολική ενέργεια Ε του σήματος είναι πεπερασμένη και μη μηδενική, τότε το σήμα αυτό είναι ένα ενεργειακό σήμα. Αν η μέση ισχύς P του σήματος είναι πεπερασμένη και μη μηδενική, τότε το σήμα αυτό είναι ένα σήμα ισχύος. Σημειώνουμε εδώ ότι ένα σήμα ισχύος έχει άπειρη ενέργεια, ενώ ένα ενεργειακό σήμα έχει μηδενική ισχύ.

Σύμφωνα με τα παραπάνω, για να διαπιστώσουμε αν ένα σήμα είναι ενεργειακό ή είναι σήμα ισχύος, ακολουθούμε την παρακάτω διαδικασία: Αν το όριο αυτό υπάρχει, είναι πεπερασμένο και διάφορο του μηδενός, τότε το σήμα x(t) είναι ενεργειακό. Αν το όριο αυτό δεν υπάρχει ή είναι ίσο με +∞, τότε: Ενέργεια και Ισχύς Σήματος

III. Υπολογίζουμε το όριο: Αν το όριο αυτό υπάρχει, είναι πεπερασμένο και διάφορο του μηδενός, τότε το σήμα x(t) είναι σήμα ισχύος. δεν ισχύει τίποτα Φυσικά, αν δεν ισχύει τίποτα από τα παραπάνω, το σήμα x(t) α λ λ ά ο ύ τ ε σ ή μ α ι σ χ ύ ο ς. δεν είναι σήμα ενέργειας, α λ λ ά ο ύ τ ε σ ή μ α ι σ χ ύ ο ς. δεν ισχύει τίποτα Φυσικά, αν δεν ισχύει τίποτα από τα παραπάνω, το σήμα x(t) α λ λ ά ο ύ τ ε σ ή μ α ι σ χ ύ ο ς. δεν είναι σήμα ενέργειας, α λ λ ά ο ύ τ ε σ ή μ α ι σ χ ύ ο ς. Ενέργεια και Ισχύς Σήματος

Παραδείγματα ενέργειας 20

Άρτιο - Περιττό

Παραδείγματα Odd = π εριττός

Περιοδικότητα

Περιοδικά Σήματα Συνεχούς Χρόνου Ένα σήμα συνεχούς χρόνου x(t) θα ονομάζεται περιοδικό, όταν υπάρχει σταθερή Τ τέτοια ώστε για κάθε t να ισχύει: x(t+T)=x(t) (1) Ο ελάχιστος θετικός αριθμός Τ για τον οποίο ισχύει η σχέση αυτή ονομάζεται περίοδος του περιοδικού σήματος x(t). Η γραφική παράσταση του περιοδικού σήματος x(t) περιόδου Τ, αποτελείται από τμήματα τα οποία επαναλαμβάνονται ανά χρονικά διαστήματα Τ. t X(t) 0T2T3T-T-2T-3T … …

Παράδειγμα: Το σήμα x(t) =Α cos(ωt+φ), όπου Α, ω, φ είναι σταθερές, είναι περιοδικό με περίοδο: (2) Πράγματι είναι: x(t+T) = Acos[ω(t+T)+φ] = Αcos(ωt+ωΤ+φ) και επειδή σύμφωνα με τη σχέση (2) είναι ωΤ=2π, παίρνουμε: x(t+T) = Αcos(ωt+2π+φ) = Αcos(ωt+φ+2π) = Αcos(ωt+φ) => x(t+T) = x(t) αφού ισχύει: cos(α+2π) = cosα Περιοδικά Σήματα Συνεχούς Χρόνου

Μιγαδικά Εκθετικά σήματα

More…

Μιγαδικά Εκθετικά σήματα

Μιγαδικά Διακριτά Εκθετικά σήματα

Πότε ένα εκθετικό είναι περιοδικο ; 31 More…

Παραδείγματα

Ασκήσεις

Άσκηση 1 του More…

Άσκηση 2 Θεωρήστε ένα χρονικά αμετάβλητο σύστημα F(·) με είσοδο x(t) και έξοδο y(t). Δείξτε ότι εάν το x(t) είναι περιοδικό με περίοδο Τ, το ίδιο ισχύει και για το y(t). Δώστε ένα παράδειγμα γραμμικού χρονικά μεταβαλλόμενου συστήματος και μιας περιοδικής εισόδου στο σύστημα αυτό για την οποία η αντίστοιχη έξοδος δεν είναι περιοδική. Λύση:

Άσκηση 2 (συνέχεια) Για να δούμε ότι το παραπάνω δεν ισχύει, γενικά, για χρονικά μεταβαλλόμενα συστήματα, ας θεωρήσουμε το σύστημα y(t) = G[x(t)] ≡ x(t 2 ), που είναι γραμμικό και χρονικά μεταβαλλόμενο. Έστω η είσοδος x(t)=cos(2πt), που είναι περιοδική με περίοδο Τ=1.

Άσκηση 3 Να εξετάσετε αν καθένα από τα παρακάτω σήματα είναι περιοδικό ή απεριοδικό. Στην περίπτωση που είναι περιοδικό να βρεθεί η περίοδος Τ Να εξετάσετε αν καθένα από τα παρακάτω σήματα είναι περιοδικό ή απεριοδικό. Στην περίπτωση που είναι περιοδικό να βρεθεί η περίοδος Τ

Άσκηση 3 Λύση

Άσκηση 3 Ελέγχουμε αν υπάρχει Τ>0 έτσι ώστε να ισχύει για κάθε t: Η σχέση αυτή, δεν μπορεί να ισχύει για κάθε t, οποιαδήποτε και αν είναι η τιμή της θετικής σταθερής Τ. Άρα το σήμα: είναι απεριοδικό. Λύση

(iii) 3sin2t+cos6t Άσκηση 3 Λύση Ελέγχουμε αν υπάρχει θετική σταθερή Τ, έτσι ώστε να ισχύει: Ένας τρόπος να ισχύει αυτή για κάθε t είναι να ισχύουν συγχρόνως οι σχέσεις: όπου n, m είναι θετικοί ακέραιοι. Η ελάχιστη τιμή του Τ προκύπτει για τις μικρότερες τιμές των n, m για τις οποίες οι σχέσεις αυτές ισχύουν συγχρόνως. Αυτό ισχύει για n=1, m=3 οπότε Τ=π. Άρα το σήμα είναι περιοδικό με περίοδο ίση με π.

Άσκηση 4 Για καθένα από τα παρακάτω σήματα να εξετασθεί αν πρόκειται για σήμα ισχύος ή για σήμα ενέργειας: όπου Α, ω, λ είναι θετικές σταθερές.

Άσκηση 4 (i) Υπολογίζουμε το ολοκλήρωμα: Παρατηρούμε εδώ, ότι η ολοκληρωτέα συνάρτηση είναι άρτια, αφού, προφανώς, είναι και ότι τα άκρα ολοκλήρωσης είναι αντίθετα. Άρα έχουμε: (1) Λύση

Άσκηση 4 (συνέχεια) Λύση

Άσκηση 4 (συνέχεια) Λύση

Άσκηση 4 (ii) Λύση όπου Α, ω, λ είναι θετικές σταθερές.

Άσκηση 4 (iii) Λύση