Chimie Analitică Calitativă FORMAREA DE COMBINAŢII COMPLEXE Chimie Analitică & Analiză Instrumentală Prof. Dr. Robert Săndulescu 2009-2010
GENERALITĂŢI Teoria coordinaţiei Alfred Werner (1893) - ion pozitiv, numit ion sau atom central, generator de complex; - liganzi, ioni negativi sau molecule neutre; Sfera de coordinare, internă a complexului. Sfera de ionizare, externă, compusă din ioni pozitivi sau negativi. 2009-2010 Prof. Dr. Robert Săndulescu
GENERALITĂŢI Ionii din sfera externă sunt legaţi de ionul central printr-o legătură polară, ceea ce înseamnă că după dizolvarea complexului în apă, aceştia se detaşează sub formă de ioni liberi. Legăturile dintre ionul central şi liganzi nu sunt polare, ceea ce însemnaă că în soluţie apoasă, sfera internă nu disociază. De exemplu, în cazul K4[Fe(CN)6], ionul central al complexului este ionul Fe2+ şi liganzii sunt ionii CN-. Ionii K+ se găsesc în sfera externă. Grupul de atomi [Fe(CN)6]4- pus în paranteze pătrate reprezintă sfera internă care constituie în soluţie apoasă un anion complex. 2009-2010 Prof. Dr. Robert Săndulescu
GENERALITĂŢI Sarcinile ionilor complecşi sunt egale cu suma algebrică a sarcinilor ionului central şi liganzilor. Sarcina ionului complex [Fe(CN)6]4- este deci egală cu (+2)+(-6) = -4. Dacă liganzii sunt molecule neutre, sarcina complexului este egală cu sarcina ionului central. Astfel, sarcina ionului complex [Ag(NH3)2]+ este aceeiaşi cu a ionului Ag+. 2009-2010 Prof. Dr. Robert Săndulescu
GENERALITĂŢI Numărul liganzilor coordinaţi la acelaşi ion central într-un complex se numeşte număr de coordinare. Majoritatea ionilor centrali (Cr3+, Co3+, Fe2+, Fe3+, Zn2+, Ni2+, Pt4+) au numărul de coordinare egal cu 6. În cazul Cd2+, Cu2+, Hg2+, Pt2+ etc., numărul de coordinare este 4. Se cunosc, mai rar şi alte numere de coordinare: 2, 3, 8. 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA GENERATOARE DE COMPLECŞI A CATIONILOR Capacitatea generatoare de complecşi a cationilor depinde de o serie de factori: - configuraţia electronică a ionului central; - sarcina ionului; - acţiunea polarizantă; - deformabilitatea. 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA GENERATOARE DE COMPLECŞI A CATIONILOR Schwarzenbach împarte cationii în trei grupe a) Cationi cu structură saturată (8e- sau 2e-): Li+, Na+, K+, Mg2+, Ca2+, Sr2+, Ba2+, Al3+ provin din grupele principale ale sistemului periodic, sunt polarizanţi slabi şi greu deformabili. Prin urmare, formează: - un număr mic de compuşi puţin solubili; - puţine combinaţii complexe şi - puţine combinaţii colorate 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA GENERATOARE DE COMPLECŞI A CATIONILOR b) Cationi cu structură pseudosaturată (18 sau 18+2e-) 18 e- ns2p6d10 Cu+, Ag+, Zn2+, Cd2+, Hg2+, As(V), Sb(V), Sn(IV) 18+2e- ns2p6d10(n+1)s2 Pb2+, Sn2+, As3+, Sb3+, Bi3+ 2(18+1e-) Hg22+ Provin din grupele secundare ale sistemului periodic şi sunt polarizanţi puternici şi uşor deformabili. Prin urmare, au o tendinţă mare de a forma combinaţii complexe stabile, puţin solubile şi colorate, deoarece legăturile dintre ionul central şi liganzi au un caracter covalent accentuat. 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA GENERATOARE DE COMPLECŞI A CATIONILOR c) Cationi cu structură nesaturată (incompletă): Cr3+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+ din seria metalelor tranziţionale ai căror orbitali d sunt în curs de ocupare cu electroni. Au un caracter intermediar şi formează complecşi cu liganzi având atomi donori C, N, S et X. 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA GENERATOARE DE COMPLECŞI A CATIONILOR Ahrlandt, Chatt şi Davies a. Acceptori de tip a (ioni din grupele I, a IIa şi IIIa principale şi din grupele a IVa şi a Va secundare) care formează complecşi stabili cu liganzi având atomi donori C, N, O, F. b. Acceptori de tip b (ioni din grupele I şi a IIa secundare, Pd2+, Pt2+) care formează complecşi cu liganzi având atomi donori Si, P, S şi X c. Acceptori de tip c (majoritatea metalelor tranziţionale) care au un comportament intermediar. 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA GENERATOARE DE COMPLECŞI A CATIONILOR Pearson clasifică cationii, ţinând cont de preferinţa lor de a forma complecşi şi forţa legăturii metal-ligand. Conform teoriei sale, cationii metalici consideraţi acizi, se împart în: a) Acizi duri (Hard) care formează legături ionice Li+ Na+ Mg2+ Al3+ Si4+ K+ Ca2+ Se3+ Ti4+ Cr3+ Mn2+ Fe3+ Co3+ ... As3+ Sr2+ Ba2+ duritatea scade cu Z 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA GENERATOARE DE COMPLECŞI A CATIONILOR b) Acizi intermediari Fe2+ Co2+ Ni2+ Cu2+ Zn2+ Ru2+ Rh2+ Sn2+ Sb2+ Os2+ Ir2+ Pb2+ Bi3+ c) Acizi moi (Soft) care formează legături covalente Cu+ Pd2+ Ag+ Cd2+ Tl+ Tl3+ Pt2+ Au+ Hg2+ Hg22+ 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA GENERATOARE DE COMPLECŞI A CATIONILOR Cationii acizi tari preferă liganzii baze tari şi cationii acizi moi preferă liganzii baze moi. Teoria lui Pearson nu exclude posibilitatea ca acizii duri să formeze complecşi cu liganzi baze slabe şi vice-versa, dar stabilitatea acestora este redusă. 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA COORDINATIVĂ A LIGANZILOR Alt factor care influenţează formarea combinaţiilor complexe este capacitatea coordinativă a liganzilor, care depinde de o serie de factori: - bazicitatea lor (capacitatea de a ceda o pereche de electroni); - sarcina; - deformabilitatea; - posibilitatea de a forma chelaţi. 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA COORDINATIVĂ A LIGANZILOR A. Liganzi monodentaţi F- [AlF6]3-; [FeF6]3- Cl- (Br-) [AgCl2]-; [HgCl4]2-; [PbCl4]2-; [SnCl4]2- I- [HgI4]2-; [BiI4]- CN- [Cu(CN)4]3-; [Cd(CN)4]2-; [Fe(CN)6]3-; [Fe(CN)6]4- SCN- [Ag(SCN)2]-; [Hg(SCN)4]2-; [Co(SCN)4]2-; [Fe(SCN)6]3- OH- [Zn(OH)4]2-; [Al(OH)4]-; [Cr(OH)4]-; [Sn(OH)4]2- CH3COO- [Fe(CH3COO)6(OH)2]+ NO2- [Co(NO2)6]3- H2O [Co(H2O)6]2+; [Cu(H2O)4]2+; [Al(H2O)6]3+ NH3 [Cu(NH3)4]2+; [Cd(NH3)6]2+; [Zn(NH3)6]2+ Py [CuPy2]2+ 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA COORDINATIVĂ A LIGANZILOR B. Liganzi bidentaţi SO42- [Ca(SO4)2]2-; [Al(SO4)2]- S2O32- [Ag(S2O3)2]3-; [Bi(S2O3)2]3- C2O42- [Sb(C2O4)3]3-; [Sn(C2O4)3]2- etilendiamina [Cuen2]2+; [Coen2]2+ oxina oxinaţi de Mg2+, Cd2+, Bi3+, Al3+ magnezon Mg2+ acetilacetona Cu2+, Zn2+, Cd2+, Mn2+, Fe2+, Co2+, Ni2+ dipiridil Fe2+, Fe3+ o-fenantrolina Fe2+, Fe3+ dimetilglioxima Ni2+, Fe2+, Pd2+ acid salicilic Fe3+ 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA COORDINATIVĂ A LIGANZILOR C. Liganzi polidentaţi: complexonii, acidul rubeanic Majoritatea liganzilor, ca de exemplu ionii monovalenţi, ca şi moleculele neutre NH3, H2O, piridina (Py) nu pot ocupa decât un singur punct de coordinare într-un ion complex. Se cunosc şi liganzi care pot ocupa două puncte coordinative. Aceştia sunt de exemplu, hidrazina, H2N-NH2, şi etilenediamina, H2N-CH2-CH2-NH2, ionii bivalenţi C2O42-, CO32-, SO42- etc. Toţi aceşti liganzi bidentaţi sunt legaţi de ionul central în două puncte; de exemplu, molecula de hidrazină este legată prin cei doi atomi de azot. 2009-2010 Prof. Dr. Robert Săndulescu
CAPACITATEA COORDINATIVĂ A LIGANZILOR Pearson clasifică liganzii, consideraţi baze, în: A. Baze dure cu atomi donori puţin deformabili: H2O, OH-, PO43-, SO42-, CO32-, NO3-, R-OH, F-, Cl-, RO- B. Baze intermediare Br-, NH3, R-NH2, H2N-NH2, N3-, NO2-, SO32-, piridina, anilina C. Baze moi cu atomi donori foarte deformabili: S2-, H2S, R2S, R-SH, SCN-, S2O32-, I-, CN-, R3P, (RO)3P “duritatea” scade “moliciunea” scade 2009-2010 Prof. Dr. Robert Săndulescu
STABILITATEA COMPLECŞILOR Reacţiile cu formare de combinaţii complexe sunt reacţii de echilibru. Stabilitatea complecşilor depinde de natura ionului central generator de complex, natura ligandului, natura legăturii metal-ligand, formarea de chelaţi, impedimente sterice, pH, solvent etc. Formarea complecşilor, în special cu liganzi monodentaţi are loc în trepte, prin substituirea succesivă a moleculelor solventului de către ligand. Fiecare etapă este caracterizată de o constantă de echilibru, iar întregul proces, de constanta de formare, numită constantă de stabilitate a complexului. 2009-2010 Prof. Dr. Robert Săndulescu
STABILITATEA COMPLECŞILOR [Cu(H2O)4]2+ + NH3 [Cu(H2O)3NH3]2+ + H2O [Cu(H2O)3NH3]2+ + NH3 [Cu(H2O)2(NH3)2]2+ + H2O [Cu(H2O)2(NH3)2]2+ + NH3 [CuH2O(NH3)3]2+ + H2O 2009-2010 Prof. Dr. Robert Săndulescu
STABILITATEA COMPLECŞILOR [CuH2O(NH3)3]2+ + NH3 [Cu(NH3)4]2+ + H2O Reacţia totală este: [Cu(H2O)4]2+ + 4NH3 [Cu(NH3)4]2+ + 4H2O 2009-2010 Prof. Dr. Robert Săndulescu
STABILITATEA COMPLECŞILOR Stabilitatea complecşilor se exprimă în general prin constanta de instabilitate, sau de decomplexare. 2009-2010 Prof. Dr. Robert Săndulescu
IMPORTANŢA COMPLECŞILOR ÎN ANALIZA CALITATIVĂ Formarea complecşilor are numeroase aplicaţii la separarea, identificarea şi dozarea cationilor. Separarea cationilor 1. Formarea cloro-complecşilor Pb2+ şi Ag+ la precipitarea gr. I de cationi cu HCl concentrat; 2. Separarea Ag+ de Hg22+ cu NH3 prin formarea complexului solubil [Ag(NH3)2]+; 3. Separarea Cu2+ şi Cd2+ de Bi3+ cu NH3 când se formează Bi(OH)3 şi aminele complexe solubile [Cu(NH3)4]2+ respectiv [Cd(NH3)6]2+; 4. Separarea Cu2+ de Cd2+ prin formarea ciano-complecşilor solubili [Cu(CN)4]3- respectiv [Cd(CN)4]2-; 2009-2010 Prof. Dr. Robert Săndulescu
IMPORTANŢA COMPLECŞILOR ÎN ANALIZA CALITATIVĂ 5. Separarea Sb3+ de Sn4+ prin formarea oxalato-complecşilor solubili [Sb(C2O4)3]3- respectiv [Sn(C2O4)3]2-; 6. Eliminarea substanţelor organice (oxalat, tartrat, citrat) înaintea separării grupei a III-a de cationi; 7. Separarea Al3+ şi Zn2+ în grupa a III-a cu NaOH sub forma hidroxo-complecşilor [Al(OH)4]- şi [Zn(OH)4]2-; 8. Separarea Al3+ de Zn2+ cu NH3 diluat, când se formează Al(OH)3 şi amina solubilă [Zn(NH)6]2+; 9. Separarea Ca2+ de Sr2+ în grupa a IV-a cu (NH4)2SO4 când se formează SrSO4 şi complexul solubil [Ca(SO4)2]2-; 2009-2010 Prof. Dr. Robert Săndulescu
IMPORTANŢA COMPLECŞILOR ÎN ANALIZA CALITATIVĂ Reacţii de identificare Ag+ - ditizonă, p-dimetilamino-benziliden-rodanină; Pb2+, Cu2+, Cd2+, Zn2+, Hg2+, Bi3+ - ditizonă; Co2+, Cu2+, Ni2+ - acid rubeanic; Co2+ - R. Vogel (NH4SCN în acetonă); Cu2+ - R. Spacu (piridină şi NH4SCN); Ni2+ - R. Ciugaev (α, α’- dimetilglioximă); Fe2+ - [Fe(CN)6]3-, dipiridil, orto-fenantrolină; Fe3+ - [Fe(CN)6]4-, SCN-, acid salicilic, orto-fenantrolină; Al3+ - alizarina; Zn2+ - metilviolet; Mg2+ - magnezon I şi II; 2009-2010 Prof. Dr. Robert Săndulescu
IMPORTANŢA COMPLECŞILOR ÎN ANALIZA CALITATIVĂ 2009-2010 Prof. Dr. Robert Săndulescu
IMPORTANŢA COMPLECŞILOR ÎN ANALIZA CALITATIVĂ Importanţa combinaţiilor complexe în analiză rezidă în aceea că reacţiile lor de formare sunt foarte sensibile şi specifice anumitor ioni. Ionul Fe3+ se identifică prin reacţia cu K4[Fe(CN)6] obţinându-se albastru de Prusia, Fe4[Fe(CN)6]3, ionul Cu2+ sub formă de compuşii complecşi Cu2[Fe(CN)6] sau [Cu(NH3)4]2+, ionul Co2+ sub formă de săruri complexe (NH4)2[Co(SCN)4] (R.Vogel) sau Co[Hg(SCN)4], ionul Ni2+ sub formă de chelat în prezenţa dimetilglioximei. 2009-2010 Prof. Dr. Robert Săndulescu
IMPORTANŢA COMPLECŞILOR ÎN ANALIZA CALITATIVĂ O categorie specială o formează complecşii interni. Un exemplu foarte simplu este oferit de glicocolatul de cupru, adică de sarea acestuia cu acidul aminoacetic (glicocol), cu formula H2N-CH2-COOH, care înafara grupării acide -COOH conţine şi o grupare amino -NH2 capabilă să coordineze ionul Cu2+. 2009-2010 Prof. Dr. Robert Săndulescu
IMPORTANŢA COMPLECŞILOR ÎN ANALIZA CALITATIVĂ Compusul format de ionul Ni2+ cu dimetilglioxima, numit dimetiglioximat de nichel (R. Ciugaev), este un complexe chelat: 2009-2010 Prof. Dr. Robert Săndulescu
IMPORTANŢA COMPLECŞILOR ÎN ANALIZA CALITATIVĂ 2009-2010 Prof. Dr. Robert Săndulescu