(χωριζόμενων μεταβλητών, γραμμικές 1ης τάξης)

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΜΕΤΑΛΛΕΥΤΙΚΗ ΝΟΜΟΘΕΣΙΑ ΔΙΑΧΕΙΡΙΣΗΚΑΙ ΑΞΙΟΠΟΙΗΣΗ ΜΕΤΑΛΛΕΥΜΑΤΩΝ Τζίμας Σπύρος Μηχανικός Μεταλλείων – Μεταλλουργός ΕΜΠ.
Advertisements

ΠΑΧΥΣΑΡΚΙΑ ΜΑΘΗΜΑ 10.
ΤΜΗΜΑ ΑΝΑΤΟΛΙΚΗΣ ΣΤΕΡΕΑΣ Το Τεχνικό Επιμελητήριο Ελλάδας (ΤΕΕ) ιδρύθηκε το 1923, είναι Νομικό Πρόσωπο Δημοσίου Δικαίου με αιρετή Διοίκηση. Κατά τους κανόνες.
ΣΤΑΤΙΚΗ Ι Ενότητα 1 η : Ο ΔΙΣΚΟΣ ΚΑΙ Η ΔΟΚΟΣ Διάλεξη: Εσωτερικές δυνάμεις του δίσκου – η δοκός και οι εσωτερικές δυνάμεις της δοκού – τα διαγράμματα της.
Ο Άνθρωπος είναι ένα ον το οποίο φτιάχνει πολιτισμό και έχει βαθύ στοχασμό, συναισθήματα και σεβασμό στη ζωή των άλλων. Ορισμός.
ΣΥΣΤΑΣΗ - ΣΥΓΚΡΟΤΗΣΗ ΑΥΤΟΔΙΟΙΚΗΣΗΣ ΚΑΙ ΑΠΟΚΕΝΤΡΩΜΕΝΗΣ ΔΙΟΙΚΗΣΗΣ Οι δήμοι και οι περιφέρειες συγκροτούν τον πρώτο και δεύτερο βαθμό τοπικής αυτοδιοίκησης.
Ενόργανη Ανάλυση I Χρωματογραφία Λεπτής Στιβάδας Κοντογιάννης Χρίστος, Καθηγητής Τμήμα Φαρμακευτικής.
ΣΥΜΜΟΡΦΩΣΗ ΣΕ ΔΙΚΑΣΤΙΚΕΣ ΑΠΟΦΑΣΕΙΣ Εισηγητές: - Κωνσταντίνος Μπλάγας, Δ/νων Σύμβουλος ΔήμοςΝΕΤ - Καλλιόπη Παπαδοπούλου, Νομική Σύμβουλος ΔήμοςΝΕΤ.
«Διγλωσσία και Εκπαίδευση» Διδάσκων: Γογωνάς Ν. Φοιτήτρια: Πέτρου Μαρία (Α.Μ )
Λογισμός πιθανοτήτων Η μαθηματική τυποποίηση για τη διαχείριση του μέτρου πιθανότητας.
Π.Γ.Ε.Σ.Σ ΚΑΡΝΑΡΟΥ ΧΡΙΣΤΙΝΑ Β2ΘΡΗΣΚΕΥΤΙΚΑ ΚΕΦΑΛΑΙΟ 5 ΣΕΛΙΔΕΣ ΕΡΓΑΣΙΕΣ Α-Δ.
Εισαγωγή στην Οικονομική Ι Θεωρία Καταναλωτή. Χρησιμότητα είναι η ιδιότητα εκείνη που κάνει ένα αγαθό να είναι επιθυμητό. Συνολική χρησιμότητα (U) ονομάζεται.
ΛΟΓΙΣΤΙΚΗ ΚΟΣΤΟΥΣ ΤΕΧΝΙΚΕΣ ΚΟΣΤΟΛΟΓΗΣΗΣ Αποφάσεις Βάσει Οριακής & Πλήρους Κοστολόγησης Α.Τ.Ε.Ι. ΚΡΗΤΗΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΠΟΦΑΣΕΙΣ ΒΑΣΕΙ ΟΡΙΑΚΗΣ.
Υδραυλική ανοικτών αγωγών Υδραυλική ανοικτών αγωγών Επισκόπηση του θέματος και σχόλια Δρ Μ. Σπηλιώτη Λέκτορα Κείμενα από Μπέλλος, 2008, Σούλης 2013 και.
ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ Ι
ΜΑΘΗΜΑ 2.  Εργασία (άνθρωπος)  Φύση/Έδαφος (γη)  Κεφάλαιο (χρήμα)  Επιχειρηματικότητα (ιδέα, διοίκηση)
Κάθετες και πλάγιες. Κάθετα και πλάγια τμήματα Έστω ευθεία ε και σημείο Α εκτός αυτής. ε Κ Β Α Από το Α διέρχεται μοναδική κάθετη. Έστω ζ μια άλλη ευθεία.
Υπεύθυνη καθηγήτρια: Ε. Γκόνου Μαθητές: Ρωμανός Πετρίδης, Βαγγέλης Πίπης Π.Γ.Ε.Σ.Σ ….Θανέειν πέπρωται άπασι.
ΤΟ ΝΕΟ ΓΥΜΝΑΣΙΟ ΠΔ 126/2016.
ΦΟΡΟΛΟΓΙΚΟ ΔΙΚΑΙΟ Ι Συνυπολογισμός προηγούμενων δωρεών ή γονικών παροχών για σκοπούς φόρου κληρονομίας Διδάσκων καθηγητής: Α. Τσουρουφλής Εξηνταβελώνη.
ΟΙ ΑΡΓΥΡΟΙ ΚΑΙ ΧΡΥΣΟΙ ΚΑΝΟΝΕΣ ΤΗΣ ΛΥΣΗΣ
Οι Αριθμοί … 5.
ΤΗΣ ΣΧΟΛΙΚΗΣ ΚΟΙΝΟΤΗΤΑΣ ΓΙΑ ΟΡΘΟΛΟΓΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΔΙΑΤΡΟΦΙΚΩΝ ΕΠΙΛΟΓΩΝ
Το ερώτημα "τι είναι επιστήμη;" δεν έχει νόημα χωρίς κάποιο χρονικό προσδιορισμό Όταν τις δεκαετίες του 80 και του 90 κατέρρεε το αποκαλούμενο ανατολικό.
Πως Διδάσκω Έννοιες, Φυσικά Μεγέθη, Νόμους
ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Η πιο σημαντική κατανομή στη στατιστική είναι η κανονική κατανομή. Η Κανονική Κατανομή έχει τεράστια σημασία στη Στατιστική, στην Οικονομετρία,
Ενότητα 2: Κινητική Κώστας Παπαδημητρίου Τμήμα Μηχανολόγων Μηχανικών
Κατανομή Poisson Αναφέρεται σε διακριτή Τ.Μ. και συμβολίζει τον αριθμό πραγματοποίησης ενός γεγονότος σε κάποιο συνεχές χρονικό διάστημα t με συχνότητα.
Διαφορική εξίσωση Riccati.
γραμμικές διαφορικές εξισώσεις
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ Democritus University of Thrace Department of Production.
Ενημέρωση για αλλαγές στο Γυμνάσιο
(χωριζόμενων μεταβλητών, γραμμικές 1ης τάξης)
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
Μέγας Αθανάσιος Thug Life Πέρρα Μαρία Φεφέ Αικατερίνη
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ (105)
Ανάληψη Υποχρέωσης (Π. Δ
Αντιμετώπιση Μαθησιακών Δυσκολιών στα Μαθηματικά
ΣΧΕΔΙΑΣΜΟΣ (II) Παράδειγμα (ΟΠΑΑΧ).
ΤΟΠΙΚΟ ΣΥΜΦΩΝΟ ΠΟΙΟΤΗΤΑΣ Α. Κουτσούρης
Οι αλλαγεΣ Στο ΓυμναΣιο
Σύστημα πρόσβασης στην Τριτοβάθμια Εκπαίδευση
طبقه‌بندهای خطی Linear Classifiers حسین منتظری کردی
گرد آورنده و مدرس : محمد ریخته گر
ΓΙΑ ΤΗΝ ΕΤΑΙΡΙΚΗ ΔΙΑΚΥΒΕΡΝΗΣΗ
Stability Theory of Structures
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ (105)
ارائه دهندگان اعظم خیرالهی مریم خضریان سحر سلیمانی.
اعداد الأستاذ/ عبدالرؤوف أحمد يوسف
Αποτελέσματα έρευνας που πραγματοποιήθηκε στο σχολείο μας
מעבר אור מתווך שקוף לתווך שקוף
Ιστορία 8η Σέρλοκ Χολμς.
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΞΑΝΘΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ & ΔΙΟΙΚΗΣΗΣ Democritus University of Thrace Department of Production.
ΝΟΜΟΣ ΥΠ' ΑΡΙΘΜ. 4495/17 (167 Α/ ) Έλεγχος και προστασία του Δομημένου Περιβάλ­λοντος και άλλες διατάξεις και αλλαγές με το ν.4513/18 (101 Α/2018)
ΣΥΓΚΕΝΤΡΩΣΗ ΠΡΟΕΔΡΩΝ Π.Φ.Σ. 5 ΜΑΡΤΙΟΥ 2018.
11ο γυμνάσιο ΕΝΗΜΕΡΩΣΗ ΓΟΝΕΩΝ – ΚΗΔΕΜΟΝΩΝ Α΄ΤΑΞΗΣ …στη μεγαλύτερη βαθμίδα! … μεγαλύτερες απαιτήσεις! …νάτην και η εφηβεία!!
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ (105)
Κεφάλαιο 5 Διακριτές Κατανομές Πιθανοτήτων.
Мероприятие, посвященное восстанию студентов
2. ομογενείς δ.ε. 1ης τάξης ως προς τις μεταβλητές τους.
“ХХІ ғасыр өскіндері” интеллектуальдық сайыс 5-6 сынып
Екі векторды векторлық көбейту
Διαφορική εξίσωση Riccati.
Σύντομος οδηγός υποψηφίου δημάρχου/δημοτικού συμβούλου
Σύντομος οδηγός υποψηφίου δημάρχου/δημοτικού συμβούλου
(χωριζόμενων μεταβλητών, γραμμικές 1ης τάξης)
Σύντομος οδηγός υποψηφίου συμβούλου/προέδρου κοινότητας
Σύντομος οδηγός υποψηφίου δημάρχου/δημοτικού συμβούλου
7η ΕΞΕΙΔΙΚΕΥΣΗ ΕΦΑΡΜΟΓΗΣ ΤΟΥ ΕΠ - ΥΜΕΠΕΡΑΑ
Μεταγράφημα παρουσίασης:

(χωριζόμενων μεταβλητών, γραμμικές 1ης τάξης) που μετατρέπονται διαφορικές εξισώσεις σε γνωστές μορφές (χωριζόμενων μεταβλητών, γραμμικές 1ης τάξης) Riccati Bernoulli

Bernoulli διαφορική εξίσωση n=0 0n1 n=1 γραμμική αντικατάσταση 1ης τάξης n=1 αντικατάσταση z(x) = y1-n χωριζόμενων μεταβλητών

για n = 0 γραμμική 1ης τάξης γενική λύση

χωριζόμενων μεταβλητών για n = 1 χωριζόμενων μεταβλητών γενική λύση

y-n (1-n)-1 z΄(x) + P(x) z(x) = Q(x) θέτουμε: z(x) = y1-n τότε z΄(x) = (1-n)y1-n-1 y΄ y-n y΄ = (1-n)-1 z΄(x) η εξίσωση (Ι) γίνεται γραμμική 1ης τάξης (1-n)-1 z΄(x) + P(x) z(x) = Q(x) z΄(x) + (1-n) P(x) z(x) = (1-n) Q(x) (II) διότι έχει την μορφή: όπου R(x) = (1-n) P(x) και W(x) = (1-n)Q(x)

Κατά συνέπεια η γενική λύση της δ.ε. είναι: z(x) = y1-n έχουμε Από την σχέση γενική λύση

Άσκηση: Να λυθεί η δ.ε. xy΄ + y = y2lnx, x>0 διότι έχει την μορφή dy/dx + P(x)y = Q(x)yn όπου P(x)=x-1, Q(x)=lnx/x και n=2 είναι δ.ε. Bernoulli y-2 y-2 Πολλαπλασιάζουμε και τα δύο μέλη της (Ι) με y-2

dz/dx+R(x)z=W(x), R(x)=-x-1 και W(x)=-lnxx-1 Θέτουμε: z(x) = y1-2  z(x) = y-1 Παραγωγίζουμε: z΄(x) = -y-2 y΄ Δηλαδή, y-2(dy/dx) = -(dz/dx) η εξίσωση (ΙΙ) γίνεται Γραμμική 1ης τάξης dz/dx+R(x)z=W(x), R(x)=-x-1 και W(x)=-lnxx-1 γενική λύση (ΙΙΙ)

ολοκλήρωση κατά παράγοντες όπου

άρα και επομένως η (ΙΙΙ) γίνεται:

και επομένως y = lnx + xc3 + 1 = y-1 Επομένως η γενική λύση της δ.ε. γίνεται : z(x) = y-1 δηλαδή, lnx + xc3 + 1 = y-1 και επομένως y = γενική λύση

Άσκηση: Να λυθεί η δ.ε. διότι έχει την μορφή dy/dx + P(x)y = Q(x)yn Λύση: διαιρούμε με x (x0, διότι στην περίπτωση που x=0 δεν έχουμε δ.ε.) διότι έχει την μορφή dy/dx + P(x)y = Q(x)yn όπου P(x)=-4x-1, Q(x)=x και n=1/2 είναι δ.ε. Bernoulli y-1/2 y-1/2 Πολλαπλασιάζουμε και τα δύο μέλη της (Ι) με y-1/2

dz/dx+R(x)z=W(x), R(x)=-2/x και W(x)=x/2 Θέτουμε: z(x) = y1-1/2  z(x) = y1/2 Παραγωγίζουμε: z΄(x) = 1/2y-1/2 y΄ Δηλαδή, y-1/2(dy/dx) = 2dz/dx και η εξίσωση (ΙΙ) γίνεται Γραμμική 1ης τάξης dz/dx+R(x)z=W(x), R(x)=-2/x και W(x)=x/2 γενική λύση (ΙΙΙ)

και η γενική λύση γίνεται,

Επομένως η γενική λύση της δ.ε. γίνεται :

z(x) = y1/2 δηλαδή, γενική λύση

διάλειμμα - interval