ΤΡΙΓΩΝΑ.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Αξιοποιώντας τον μαθητικό υπολογιστή στη τάξη … Γ. Λαγουδάκος – Χρ. Σταύρου
Advertisements

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
Διανομή έκτασης με ευθεία διερχόμενη από σταθερό σημείο
ΣΤΟΧΟΙ: Με τη συμπλήρωση του διδακτικού στόχου αυτού ο/η μαθητής/τρια πρέπει: 1. Να μπορεί να διχοτομεί ευθεία γραμμή και γωνία.
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑ.
ΤΡΙΓΩΝΑ.
Παιχνίδι γνώσεων γεωμετρία στη.
Κανονικά πολύγωνα Τουρναβίτης Στέργιος.
ΣΤΟΧΟΙ: ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΧΑΡΤΑΕΤΟΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ
Sketchpad Χρήση του λογισμικού ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗΝ ΧΡΗΣΗ ΚΑΙ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΩΜΕΤΡΙΑ.
Πώς είναι ένα τάνγκραμ;
ΠΡΟΒΟΛΕΣ.
Παραλληλόγραμμα τεστ 1 τεστ 2 ασκήσεις Φάνης Παπαδάκης
ΚΑΡΑΓΕΩΡΓΟΣ ΤΡΙΑΝΤΑΦΥΛΛΟΣ Β2 α
ΣΤΟΙΧΕΙΩΔΕΙΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ
Π λ ύ γ ω ν α Γρηγόρης Τάσιου.
Τ ρ ί γ ω ν α Ιωάννης Τάσιου.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
Εμβαδό Ορθ. Παραλληλογράμμου = Μήκος Χ Πλάτος 6 Χ 3 = 18 τ.μ.
Άσκηση 6 Τα εμβαδά των τετραγώνων ΓΔΗΘ και ΑΒΛΘ του σχήματος είναι Ε 2 =900mm 2 και Ε 1 =49cm 2 αντίστοιχα. Να υπολογίσετε το μήκος της ΒΓ.
Οι πλευρές αυτές ονομάζονται
ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΤΑΝΙΑ ΤΙ.
ΓΕΩΜΕΤΡΙΑ ΣΟΦ ΤΖΑ.
ΓΕΩΜΕΤΡΙΑ από την Κλ.Μπ..
Εργαστήριο Φυσικής Χημείας | Τμήμα Φαρμακευτικής Δημήτριος Τσιπλακίδης
Άσκηση 5 Το τρίγωνο με πλευρές 3,4,5 είναι ορθογώνιο. Αν πολλαπλασιάσουμε τα μήκη των πλευρών του με έναν οποιοδήποτε φυσικό αριθμό λ ( ), το τρίγωνο που.
ΤΡΙΓΩΝΑ. ΤΡΙΓΩΝΑ Το σχήμα που προκύπτει είναι το τρίγωνο ΑΒΓ Το τρίγωνο Α Β Γ Ορίζουμε τρία σημεία Α, Β, Γ πάνω στο επίπεδο 2. Ενώνουμε τα σημεία.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ.
ΓΕΩΜΕΤΡΙΑ! Ισι Κου.
03 ΠΡΟΒΟΛΕΣ.
ΓΕΩΜΕΤΡΙΑ ΙΣ ΑΚΡΙ.
ΜΕΡΚ ΚΩΝ ΓΕΩΜΕΤΡΙΑ.
Άσκηση 4 To ισοσκελές τρίγωνο ΑΒΓ έχει πλευρά ΒΓ=8m και ύψος ΑΚ=3m
Είδη και στοιχεία τριγώνων Κεφάλαιο 3ο
Λόγος εμβαδών Όμοια τρίγωνα Όμοια πολύγωνα Τρίγωνα με Α = Α΄
Δίνεται συρμάτινο πλέγμα μήκους 10 μέτρων. Να περιφράξετε με αυτό ένα οικόπεδο, (με το μεγαλύτερο εμβαδόν), σχήματος ορθογωνίου! Ορίζουμε ως: X: Μήκος.
Άσκηση 3 Το ορθογώνιο τρίγωνο ΑΒΓ με υποτείνουσα ΒΓ=10m και το τετράγωνο με πλευρά 5m, έχουν ίσα εμβαδά. Να υπολογίσετε την απόσταση του Α από την ΒΓ.
ΠΡΟΒΟΛΕΣ.
2.3 ΚΙΝΗΣΗ ΜΕ ΣΤΑΘΕΡΗ ΤΑΧΥΤΗΤΑ
ΠΟΛΥΓΩΝΑ ΚΑΝΟΝΙΚΑ Τα πολύγωνα που έχουν πλευρές και τις γωνίες τους ίσες λέγονται πολύγωνα κανονικά.
ΠΡΟΒΟΛΕΣ.
ΚΥΚΛΟΣ B4XP20 Σχολικό Έτος:
Γεωμετρικές έννοιες και μετρήσεις μεγεθών
Ο χάρτης του χαμένου θησαυρού…
ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ Γ΄ ΓΥΜΝΑΣΙΟΥ
Άσκηση 1 : Δίνονται οι συντεταγμένες δυο σημείων Χ ο = m, Y ο = m, X 1 = m, Y 1 = m. Μετρήθηκαν οι γωνίες θλάσης (β 1 =250 g.2345.
ΕΥΚΛΕΙΔΙΑ ΓΕΩΜΕΤΡΙΑ ΚΕΦΑΛΑΙΟ 2 ο ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ( )
ΑΠΟΜΑΓΝΗΤΟΦΩΝΗΣΗ ΔΙΔΑΣΚΑΛΙΑΣ ΣΤΗΝ Α΄ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΤΑΞΗ κ. ΝΑΚΗ ΧΡΗΣΤΟΥ.
start  ΤΟ ΑΘΡΟΙΣΜΑ ΤΩΝ ΓΩΝΙΩΝ ΚΑΘΕ ΤΡΙΓΩΝΟΥ ΕΙΝΑΙ ΙΣΟ ΜΕ 180 ΜΟΙΡΕΣ  ΟΙ ΟΞΕΙΕΣ ΓΩΝΙΕΣ ΜΕ ΠΛΕΥΡΕΣ ΠΑΡΑΛΛΗΛΕΣ ΕΙΝΑΙ ΓΩΝΙΕΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ  ΟΙ.
Ο ΚΥΚΛΟΣ. Θυμάμαι ότι: Κύκλος είναι μια κλειστή καμπύλη γραμμή της οποίας όλα τα σημεία απέχουν εξίσου από το κέντρο Ο. Ο Ακτίνα (α) είναι ένα ευθύγραμμο.
ΔΙΑΝΥΣΜΑΤΙΚΗ ΠΑΡΑΣΤΑΣΗ ΕΝΑΛΛΑΣΣΟΜΕΝΩΝ ΜΕΓΕΘΩΝ
Εμβαδόν τραπεζίου Τραπέζιο λέγεται το τετράπλευρο που έχει τις δύο απέναντι πλευρές του παράλληλες. Οι πλευρές αυτές ονομάζονται μεγάλη βάση (Β) και μικρή.
Βρίσκω το εμβαδό τριγώνου
Ζώα και μαθηματικά.
Ξέρουν οι μέλισσες μαθηματικά ; Για ποιο λόγο κατασκευάζουν εξαγωνικά κελιά στις κηρήθρες ; ? Βασίλης Παπαθεοδοσίου Μαθηματικός Γυμνασίου Ψαχνών.
Άραγε, γνωρίζουν οι μέλισσες μαθηματικά?
ΠΕΡΙΜΕΤΡΟΣ ΚΑΙ ΕΜΒΑΔΟΝ ΟΡΘΟΓΩΝΙΟΥ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ
Είναι ίσα μεταξύ τους δύο τρίγωνα με 5 ζεύγη κύριων στοιχείων τους ίσα? Επιμέλεια: Κουρτέση Γεωργία - Μαθηματικός.
Σχεδιάζουμε γεωμετρικά σχήματα...
ΦΤΙΑΧΝΩ ΣΧΗΜΑΤΑ …με προϋποθέσεις.
Ε=α2 ΤΕΤΡΑΓΩΝΟ Κορυφές: Α, Β, Γ, Δ Πλευρές: ΑΒ=ΒΓ=ΓΔ=ΔΑ=α Ιδιότητες:
Δραστηριότητα - απόδειξη
Εμβαδόν Παραλληλογράμμου
Εργασία 2η: Δραστηριότητα από την Α΄ Λυκείου (Γεωμετρία)
Κλικ για επιστροφή στην ερώτηση
ΤΡΙΓΩΝΑ.
ΣΤΟΧΟΙ: ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΓΩΝΙΑ ΣΤΟΧΟΙ: Με τη συμπλήρωση του διδακτικού στόχου αυτού θα μπορείτε να: (α) δίνετε τον ορισμό της γωνίας (β) χαρακτηρίζετε γωνίες (γ) διχοτομείτε γωνία.
Μεταγράφημα παρουσίασης:

ΤΡΙΓΩΝΑ

Το σχήμα που προκύπτει είναι το τρίγωνο ΑΒΓ Α1 Το τρίγωνο Α Β Γ Ορίζουμε τρία σημεία Α, Β, Γ πάνω στο επίπεδο 2. Ενώνουμε τα σημεία Α, Β, Γ 3. Χρωματίζουμε το εσωτερικό του σχήματος που προκύπτει Το σχήμα που προκύπτει είναι το τρίγωνο ΑΒΓ

Α2 Στοιχεία τριγώνου Γ Τα κύρια στοιχεία του τριγώνου ΑΒΓ είναι: Οι τρεις πλευρές ΑΒ, ΒΓ και ΓΑ Α Β Οι τρεις γωνίες Â, Β και Γ

Α3 Ύψος τριγώνου Γ Γ Φέρνουμε κάθετο από την κορυφή Γ στην πλευρά ΑΒ ύψος Το ευθύγραμμο τμήμα ΓΔ είναι το ύψος του τριγώνου Α Β βάση Δ Δ Η πλευρά ΑΒ είναι η βάση του τριγώνου

Όλα τα ύψη περνούν από το σημείο Ο Α4 Ύψη τριγώνου Γ Χρησιμοποιώντας το γνώμονά μας ας προσπαθήσουμε να χαράξουμε τα τρία ύψη του τριγώνου ΑΒΓ. Όλα τα ύψη περνούν από το σημείο Ο Ε Ο Ζ Α Β Δ

Β. Είδη τριγώνων ως προς τις γωνίες τους Α Γ Β Δ Ε Ζ Η Ι Θ 60ο 30ο 40ο 50ο 70ο 105ο 50ο 45ο 90ο Το τρίγωνο ΑΒΓ είναι οξυγώνιο, γιατί έχει όλες τις γωνίες οξείες Το τρίγωνο ΔΕΖ είναι αμβλυγώνιο, γιατί έχει μια γωνία αμβλεία Το τρίγωνο ΗΘΙ είναι ορθογώνιο, γιατί έχει μια γωνία ορθή 50ο+70ο+60ο=180ο 105ο+45ο+30ο=180ο 90ο+50ο+40ο=180ο Το άθροισμα των γωνιών κάθε τριγώνου είναι 180ο

Γ1 Είδη τριγώνων ως προς τις πλευρές τους Δ Ε Ζ Α Γ Β Η Ι Θ 5 εκ. 6,5 εκ. 6 εκ. 5,4 εκ. 6,5 εκ. 5 εκ. Το τρίγωνο ΑΒΓ είναι σκαληνό, γιατί έχει όλες τις πλευρές του άνισες Το τρίγωνο ΔΕΖ είναι ισοσκελές, γιατί έχει δύο πλευρές ίσες Το τρίγωνο ΗΘΙ είναι ισόπλευρο, γιατί έχει όλες τις πλευρές του ίσες

Το άθροισμα των μηκών των πλευρών ενός τριγώνου λέγεται περίμετρος Γ2 Περίμετρος τριγώνων Δ Ε Ζ Α Γ Β Η Ι Θ 6 εκ. 5,4 εκ. 6,5 εκ. 5 εκ. 5 εκ. 6,5 εκ. Περίμετρος του ΑΒΓ Περίμετρος του ΗΘΙ Περίμετρος του ΔΕΖ 6 + 6,5 + 5,4 =19,9 εκ. 5 + 6,5 + 6,5 = 18 εκ. 5 + 5 + 5 = 15 εκ. Το άθροισμα των μηκών των πλευρών ενός τριγώνου λέγεται περίμετρος

Γ3 Σύγκριση γωνιών των τριγώνων Δ Ε Ζ ισοσκελές Α Γ Β σκαληνό Η Ι Θ ισόπλευρο 40ο 70ο 60ο 70ο 50ο 60ο Όλες οι γωνίες είναι άνισες Οι γωνίες απέναντι από τις ίσες πλευρές είναι ίσες Όλες οι γωνίες είναι ίσες

4. Ενώνουμε τα σημεία Γ και Β Δ1 Κατασκευές τριγώνων 1η Κατασκευή Να κατασκευάσετε τρίγωνο ΑΒΓ, το οποίο έχει πλευρές ΑΒ = 5 εκ., ΑΓ = 3 εκ. και Â = 70ο . 3. Μετράμε την ΑΓ = 3 εκ. 3 εκ. Γ 4. Ενώνουμε τα σημεία Γ και Β 70ο Α 5 εκ. Β 1. Κατασκευάζουμε τη γωνία Â=70ο 2. Μετράμε την ΑΒ = 5 εκ.

3. Κατασκευάζουμε τη γωνία Β = 40ο Δ2 Κατασκευές τριγώνων 2η Κατασκευή Να κατασκευάσετε τρίγωνο ΑΒΓ, το οποίο έχει πλευρά ΑΒ = 5 εκ., γωνία A = 70ο και γωνία B = 40ο . 70ο 4. Στο σημείο που τέμνονται οι ημιευθείες ημιευθείες σημειώνουμε την κορυφή Γ Γ 3. Κατασκευάζουμε τη γωνία Β = 40ο 40ο 70ο 40ο Α 5 εκ. Β 2. Κατασκευάζουμε τη γωνία Â = 70ο 1. Χαράζουμε το ΑΒ = 5 εκ.

Πώς υπολογίζουμε το εμβαδόν τριγώνου. Θέλουμε να υπολογίσουμε το εμβαδόν του τριγώνου ΑΒΓ. Β Ε Θεωρούμε ως βάση την πλευρά ΑΓ. Φέρνουμε σ’ αυτήν το αντίστοιχο ύψος ΒΔ. Αν αντιγράψουμε το τρίγωνο ΑΒΓ και το τοποθετήσου- με κατάλληλα έτσι ώστε να έχουν κοινή πλευρά την ΒΓ, παρατηρούμε ότι σχηματίζεται το παραλληλόγραμμο ΑΒΕΓ, το οποίο έχει την ίδια βάση και το ίδιο ύψος με το τρίγωνο ΑΒΓ. ύψος Γ Α Δ βάση Γνωρίζουμε ότι το εμβαδόν του παραλληλογράμμου ΑΒΕΓ δίνεται από τη σχέση: Ε παρ = βάση Χ ύψος Επομένως το εμβαδόν του τριγώνου ΑΒΓ, που είναι το μισό του έμβαδού του παραλληλογράμ- μου, θα δίνεται από τη σχέση: Ετρ = (βάση Χ ύψος) : 2 Ετρ = (βάση Χ ύψος) : 2 Ετρ = (8 εκ. Χ 7 εκ.) : 2 Ετρ = 56 τ.εκ. : 2 Ετρ = 28 τ.εκ. Παράδειγμα: Αν στο παραπάνω τρίγωνο ΑΒΓ η βάση έχει μήκος 8 εκ. και το ύψος 7 εκ., τότε έχουμε: Για να ξεκινήσετε την παρουσίαση κάντε διπλό κλίκ παρακάτω στο της μπάρας Για να συνεχίσετε κάντε κλικ στο της μπάρας