ΙΕΚ Γαλατσίου Στατιστική ΙΙ Μάθημα 6

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Applied Econometrics Second edition
Advertisements

Περιγραφική Στατιστική
Μετρήσεις Κεντρικής Τάσης
ΔΙΑΛΕΞΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ « ΘΕΜΕΛΙΩΣΕΙΣ »
Στατιστική Ι Παράδοση 5 Οι Δείκτες Διασποράς Διασπορά ή σκεδασμός.
ΒΕΣ 06: Προσαρμοστικά Συστήματα στις Τηλεπικοινωνίες © 2007 Nicolas Tsapatsoulis Θεωρία Στοχαστικών Σημάτων: Στοχαστικές διεργασίες, Περιγραφή εργοδικών.
ΚΕΦΑΛΑΙΟ 3 Περιγραφική Στατιστική
ΧΡΗΜΑΤΟΔΟΤΗΣΗ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΕΠΕΝΔΥΣΕΩΝ ΣΤΗ ΓΕΩΡΓΙΑ
Στατιστική I Χειμερινό Γ. Παπαγεωργίου
ΚΕΦΑΛΑΙΟ 6 ΓΕΩΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΙ ΤΕΧΝΙΚΕΣ: ΣΗΜΕΙΑ
Μια Στατιστική Έρευνα Διακρίνεται σε 3 Στάδια:
Ανάλυση Ποσοτικών Δεδομένων Στατιστική
Πηγή: Βιοστατιστική [Β.Γ. Σταυρινός, Δ.Β. Παναγιωτάκος]
Εισαγωγή Στατιστική είναι η επιστήμη που με τη βοήθεια επιστημινκών μεθόδων ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση αριθμητικών στοιχείων.
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
Τι είναι η Κατανομή (Distribution)
Στατιστικά περιγραφικά μέτρα Παναγιώταρου Αλίκη Τμήμα Νοσηλευτικής 5η Διάλεξη.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Περιγραφική Στατιστική Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Περιγραφική Στατιστική Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και.
Σχεδιασμός των Μεταφορών Ενότητα #5: Δειγματοληψία – Sampling. Δρ. Ναθαναήλ Ευτυχία Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών.
ΤΜΗΜΑ ΕΠΙΧΕΙΡΗΜΑΤΙΚΟΥ ΣΧΕΔΙΑΣΜΟΥ & ΠΛΗΡΟΦΟΡΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΠΡΟΤΥΠΑ ΜΑΘΗΜΑ ΠΡΩΤΟ ΘΕΩΡΙΑΣ - ΑΠΛΟ ΓΡΑΜΜΙΚΟ ΥΠΟΔΕΙΓΜΑ Δρ. Κουνετάς Η Κωνσταντίνος.
Εισαγωγή στη διαχείριση χαρτοφυλακίου Ως επενδυτικό χαρτοφυλάκιο ορίζουμε Μ ια περιουσία που αποτελείται από μία ή περισσότερες κατηγορίες επενδυτικών.
ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ Γ. Σιδερίδης. ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ- ΜΕΘΟΔΟΛΟΓΙΑΣ Η στατιστική ως επιστήμη.....γιατί ακριβώς τη χρειαζόμαστε; Η στατιστική ως επιστήμη.....γιατί.
Αρχές επαγωγικής στατιστικής Τμήμα :Νοσηλευτικής Πατρών Διδάσκουσα: Παναγιώταρου Αλίκη Διάλεξη 9.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Επαγωγική Στατιστική Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής.
ΕΠΑ.Λ ΠΡΟΣΒΑΣΗ ΣΤΗΝ ΤΡΙΤΟΒΑΘΜΙΑ ΟΜΑΔΑ Β΄. ΤΡΟΠΟΣ ΠΡΟΣΒΑΣΗΣ ΕΠΙΣΤΗΜΟΝΙΚΑ ΠΕΔΙΑ ΕΞΕΤΑΖΟΜΕΝΑ ΜΑΘΗΜΑΤΑ ΣΥΝΤΕΛΕΣΤΕΣ ΒΑΡΥΤΗΤΑΣ ΜΑΘΗΜΑΤΩΝ.
Δεδομένα Συχνότητα-Μέτρα Θέσης Μέτρα Διασποράς. Δεδομένα ΠοσοτικάΣυνεχή Διακριτά Ποιοτικά Δεδομένα ΠρωτογενήΔευτερογενή.
ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ για επεξεργασία δεδομένων έρευνας Εμμανουήλ Κακάρογλου Σχολικός Σύμβουλος ΠΕ12.
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΓΡΑΜΜΑΤΑ Πηγή: Βιοστατιστική [Σταυρινός / Παναγιωτάκος] Βιοστατιστική [Τριχόπουλος / Τζώνου / Κατσουγιάννη]
ΔΙΑΛΕΞΗ 11η Ποσοτική έρευνα υγείας
Δραματική Τέχνη στην εκπαίδευση: Ερευνητικό Σχέδιο ΙΙ
Στατιστική Στατιστική είναι η συλλογή, οργάνωση, ανάλυση,
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ - ΑΣΥΜΜΕΤΡΙΑΣ - ΚΥΡΤΩΣΕΩΣ
Επικρατούσα τιμή. Σε περιπτώσεις, που διαφορετικές τιμές μιας μεταβλητής επαναλαμβάνονται περισσότερο από μια φορά, η επικρατούσα τιμή είναι η συχνότερη.
Ανάλυση- Επεξεργασία των Δεδομένων
Μέτρα Διασποράς Η μεταβλητότητα, ή αλλιώς η ποικιλομορφία, στις τιμές μιας μεταβλητής θα πρέπει πάντοτε να λαμβάνεται υπόψη σε οποιαδήποτε στατιστική ανάλυση!
Τι μπορούμε να δούμε σε αυτό το ιστόγραμμα?
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Δειγματοληψία Στην Επαγωγική στατιστική οδηγούμαστε σε συμπεράσματα και αποφάσεις για τις παραμέτρους ενός πληθυσμού με τη βοήθεια ενός τυχαίου δείγματος.
Μέτρα μεταβλητότητας ή διασποράς
ΙΕΚ Γαλατσίου Στατιστική Ι Μάθημα 4
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΧΡΟΝΙΚΟυ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟυ ΕΡΓΩΝ
Ανάλυση κρίσιμου συμβάντος
Εισαγωγή στην Στατιστική
ΙΕΚ Γαλατσίου Στατιστική Ι
Έλεγχος της διακύμανσης
Μέθοδος ελαχίστων τετραγώνων – Μεθοδολογία παλινδρόμησης
Έλεγχος για τη διαφορά μέσων τιμών μ1 και μ2 δύο πληθυσμών
Πού χρησιμοποιείται ο συντελεστής συσχέτισης (r) pearson
Άσκηση 2-Περιγραφικής Στατιστικής
Η ανάγκη χρήσης μεταβλητών
Η καμπύλη Προσφοράς Μεθοδολογία Ασκήσεων.
ΙΕΚ Γαλατσίου Στατιστική Ι Μάθημα 2
Εισαγωγή στην Στατιστική
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Μορφές κατανομών Αθανάσιος Βέρδης.
Ομαδοποιημένη Κατανομή Συχνοτήτων
ΙΕΚ Γαλατσίου Στατιστική Ι Μάθημα 3
Ποσοτικές μέθοδοι περιγραφής δεδομένων
Ανανεώσιμες Πηγές Ενέργειας
Η ΔΙΩΝΥΜΙΚΗ ΚΑΤΑΝΟΜΗ ΠΙΘΑΝΟΤΗΤΑΣ.
ΣΤΑΤΙΣΤΙΚΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΧΡΟΝΙΚΟυ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟυ ΕΡΓΩΝ
Επαγωγική Στατιστική Συσχέτιση – Συντελεστής συσχέτισης Χαράλαμπος Γναρδέλλης Τμήμα Τεχνολογίας Αλιείας και Υδατοκαλλιεργειών.
Στατιστικά Περιγραφικά Μέτρα
Παναγιώταρου Αλίκη Τμήμα Νοσηλευτικής
Βιοστατιστική (Θ) ΤΕΙ Αθήνας Ενότητα 3: Περιγραφική στατιστική
Εισαγωγή στο εργαστήριο Φυσικής
Επαγωγική Στατιστική Συσχέτιση – Συντελεστές συσχέτισης Χαράλαμπος Γναρδέλλης Εφαρμογές Πληροφορικής στην Αλιεία και τις Υδατοκαλλιέργειες.
Μεταγράφημα παρουσίασης:

ΙΕΚ Γαλατσίου Στατιστική ΙΙ Μάθημα 6 ΙΕΚ Γαλατσίου Στατιστική ΙΙ Μάθημα 6 Βαγγέλης Ντάλλας

ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ – ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Τα μέτρα διασποράς μιας κατανομής εκφράζουν τις αποκλίσεις των τιμών μιας μεταβλητής γύρω από τα μέτρα κεντρικής τάσης. Τα σπουδαιότερα μέτρα διασποράς είναι : το εύρος R, η διακύμανση s2 , η τυπική απόκλιση s και ο συντελεστής μεταβολής CV. Για να κατανοήσουμε τη χρησιμότητα των μέτρων θέσης θα δώσουμε ένα παράδειγμα : Δυο μαθητές έχουν τους ακολούθους βαθμούς σε 6 μαθήματα Μαθητής Α : 10,10,10,20,20,20 Μαθητής Β : 14,16,14,16,14,16 Είναι εύκολο να παρατηρήσουμε ότι και οι δυο έχουν μ.ο. 15. Δηλαδή τα μέτρα θέσης δεν μου δίνουν κάποια πληροφορία για την ομοιομορφία των βαθμών κάθε μαθητή. Τα μέτρα διασποράς θα μας βοηθήσουν να εντοπίσουμε αυτή την ανομοιομορφία που έχουν οι βαθμοί του μαθητή Α, αλλά και την ομοιομορφία που έχουν οι βαθμοί του μαθητή Β.

ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΕΥΡΟΣ R Το πιο απλό μέτρο διασποράς είναι το εύρος R που ορίζεται ως η διαφορά της μικρότερης παρατήρησης από τη μεγαλύτερη παρατήρηση. Δηλαδή : Εύρος R=Μεγαλύτερη παρατήρηση – Μικρότερη παρατήρηση π.χ. Για το παράδειγμα με τους μαθητές Α και Β ισχύει : RΑ=20 -10 =10 , RΒ =16 -14 = 2 Σε ομαδοποιημένα δεδομένα ως εύρος R θεωρούμε τη διαφορά του κατώτερου ορίου της πρώτης κλάσης από το ανώτερο όριο της τελευταίας κλάσης. Το εύρος είναι αρκετά απλό μέτρο, που υπολογίζεται εύκολα δε θεωρείται όμως αξιόπιστο μέτρο διασποράς, γιατί βασίζεται μόνο στις δυο ακραίες παρατηρήσεις.

ΜΕΘΟΔΟΛΟΓΙΑ 2 : ΔΙΑΚΥΜΑΝΣΗ S2

ΑΣΚΗΣH 2:

ΑΣΚΗΣH 2 Λύση:

ΑΣΚΗΣH 2: Λύση

ΜΕΘΟΔΟΛΟΓΙΑ 3 : ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ – ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΟΛΗΣ ΜΕΘΟΔΟΛΟΓΙΑ 3 : ΤΥΠΙΚΗ ΑΠΟΚΛΙΣΗ – ΣΥΝΤΕΛΕΣΤΗΣ ΜΕΤΑΒΟΛΗΣ

Άσκηση 3

Άσκηση 4

Άσκηση 5 - 6