Κύκλος.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ομαλή κυκλική κίνηση.
Advertisements

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
Κωνικές τομές Κωνικές τομές
ΣΤΟΧΟΙ: Με τη συμπλήρωση του διδακτικού στόχου αυτού ο/η μαθητής/τρια πρέπει: 1. Να μπορεί να διχοτομεί ευθεία γραμμή και γωνία.
4-3 ΡΟΠΗ ΔΥΝΑΜΗΣ.
4ος Πανελλήνιος Διαγωνισμός Πρωτοπόρων Δασκάλων
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑ.
ΤΡΙΓΩΝΑ.
Κεφάλαιο 9: Περιστροφή Στερεού Σώματος
Κανονικά πολύγωνα Τουρναβίτης Στέργιος.
ΣΤΟΧΟΙ: ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
Sketchpad Χρήση του λογισμικού ΕΠΙΜΟΡΦΩΣΗ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΣΤΗΝ ΧΡΗΣΗ ΚΑΙ
Ένταξη Προοπτικού σε Φωτογραφία Ε.Μ.Π. Γεωμετρικές Απεικονίσεις και Πληροφορική Κουρνιάτης Ν.
ΘΑΛΗΣ Ο ΜΙΛΗΣΙΟΣ Από τις μαθήτριες: Αναστασούλη Μυρσίνη Γκέκα Μαρία
Η Γεωμετρία της Γενικής θεωρίας
SN 1987A Παρουσίαση Ερευνητικής Πρότασης. 1. Υπερκαινοφανείς Ορισμένοι αστέρες κατά το τέλος της ζωής τους (αφού κάψουν όλο το υδρογόνο που περιέχουν)
Όμιλος Μαθηματικά και Λογοτεχνία Μαντώ Γεωργούλη A’2 Αναστασία Κασαπίδη A’3 Ρήγας Διονυσόπουλος A’2.
Π λ ύ γ ω ν α Γρηγόρης Τάσιου.
Τ ρ ί γ ω ν α Ιωάννης Τάσιου.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
Κεφάλαιο 4ο Στοιχειοκεραίες
ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΤΑΝΙΑ ΤΙ.
ΓΕΩΜΕΤΡΙΑ ΣΟΦ ΤΖΑ.
ΓΕΩΜΕΤΡΙΑ από την Κλ.Μπ..
Με πόσο ...τρέχει η Γη; Κοίταξε για λίγο έξω από το παράθυρό σου και προσπάθησε να απαντήσεις σε αυτή την ...απλή ερώτηση: Με πόσο τρέχει η Γη; Τρελό! 
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΜΠΥΛΕΣ.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
2ο΄ Λύκειο Αγίας Βαρβάρας
ΓΕΩΜΕΤΡΙΑ ΙΣ ΑΚΡΙ.
ΜΕΡΚ ΚΩΝ ΓΕΩΜΕΤΡΙΑ.
Είδη και στοιχεία τριγώνων Κεφάλαιο 3ο
Λόγος εμβαδών Όμοια τρίγωνα Όμοια πολύγωνα Τρίγωνα με Α = Α΄
Στροφορμή.
ΠΟΛΥΓΩΝΑ ΚΑΝΟΝΙΚΑ Τα πολύγωνα που έχουν πλευρές και τις γωνίες τους ίσες λέγονται πολύγωνα κανονικά.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
2.6. ΥΔΡΟΣΤΑΤΙΚΕΣ ΠΙΕΣΕΙΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ
Αρχαίοι Έλληνες μαθηματικοί και η συμβολή τους στη θετική σκέψη
Σίσσυ Μιχαλοπούλου MA Μαθηματικά στην Εκπαίδευση
ΠΛΑΤΩΝΙΚΑ ΣΤΕΡΕΑ.
ΚΥΚΛΟΣ B4XP20 Σχολικό Έτος:
ΜΑΘΗΜΑΤΙΚΑ:ΚΥΚΛΟΣ Β΄ ΤΑΞΗ B4CE23.
Η ευκλειδeια και οι μη ευκλειδειεσ γεωμετριεσ
ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ Γ΄ ΓΥΜΝΑΣΙΟΥ
ΕΥΚΛΕΙΔΙΑ ΓΕΩΜΕΤΡΙΑ ΚΕΦΑΛΑΙΟ 2 ο ΒΑΣΙΚΑ ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ( )
ΣΤΑΤΙΚΗ Ι Ενότητα 1 η : Ο ΔΙΣΚΟΣ ΚΑΙ Η ΔΟΚΟΣ Διάλεξη: Εισαγωγή στις γραμμές επιρροής. Καθηγητής Ε. Μυστακίδης Τμήμα Πολιτικών Μηχανικών Π.Θ. ΠΑΝΕΠΙΣΤΗΜΙΟ.
ΣΤΑΤΙΚΗ Ι Ενότητα 1 η : Ο ΔΙΣΚΟΣ ΚΑΙ Η ΔΟΚΟΣ Διάλεξη: Διαγράμματα δοκού με τη μέθοδο της ομόλογης αμφιέρειστης. Καθηγητής Ε. Μυστακίδης Τμήμα Πολιτικών.
Ο ΚΥΚΛΟΣ. Θυμάμαι ότι: Κύκλος είναι μια κλειστή καμπύλη γραμμή της οποίας όλα τα σημεία απέχουν εξίσου από το κέντρο Ο. Ο Ακτίνα (α) είναι ένα ευθύγραμμο.
Επιμέλεια: Κουρτέση Γεωργία Μαθηματικός. Στα έργα των αρχαίων Ελλήνων μαθηματικών, όπως των Ευκλείδη, Αρχιμήδη, Απολλώνιου και άλλων, υπήρχαν δύο ειδών.
Παράδειγμα από Α΄Λυκείου: Ανισοτικές σχέσεις στο τρίγωνο.
ΣΤΟΧΟΣ : Ο μαθητής να μπορεί να, Ορίζει και να υπολογίζει
Συναρτήσεις πολλών μεταβλητών ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΡΟΣΑΡΜΟΓΗ Φ
Διδασκαλία και μάθηση της έννοιας της γωνίας
ΤΡΙΓΩΝΑ.
Άραγε, γνωρίζουν οι μέλισσες μαθηματικά?
Σχεδιάζουμε γεωμετρικά σχήματα...
Μερκ. Παναγιωτόπουλος-Φυσικός
Μια μικρή παρουσίαση Επιμέλεια : Κοσόγλου Ιορδάνης , μαθηματικού
ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ
Μερκ. Παναγιωτόπουλος-Φυσικός
Εργασία 2η: Δραστηριότητα από την Α΄ Λυκείου (Γεωμετρία)
Μαθηματικά: Βασικές έννοιες της αναλυτικής γεωμετρίας
Μαθηματικά: Γεωμετρικοί τόποι
(Προαπαιτούμενες γνώσεις)
Ηλεκτρικό πεδίο (Δράση από απόσταση)
ΚΑΝΟΝΑΣ 1 Ο Αγωνιστικός Χώρος.
ΤΡΙΓΩΝΑ.
ΣΤΟΧΟΙ: ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΓΩΝΙΑ ΣΤΟΧΟΙ: Με τη συμπλήρωση του διδακτικού στόχου αυτού θα μπορείτε να: (α) δίνετε τον ορισμό της γωνίας (β) χαρακτηρίζετε γωνίες (γ) διχοτομείτε γωνία.
ΕΦΑΠΤΟΜΕΝΕΣ ΣΤΟΧΟΙ: Να μπορείτε να Δίνετε τον ορισμό της Εφαπτομένης
4ος Πανελλήνιος Διαγωνισμός Πρωτοπόρων Δασκάλων Συνεργάτες στη Μάθηση Microsoft Hellas.
Μεταγράφημα παρουσίασης:

Κύκλος

Κύκλος ή περιφέρεια με κέντρο Κ και ακτίνα ρ, είναι το γεωμετρικό σχήμα που απαρτίζεται από τα σημεία του επιπέδου που ισαπέχουν από το Κ απόσταση ρ. Συμβολίζουμε C(Κ,ρ). Με εναλλακτική διατύπωση, ο κύκλος ορίζεται ως ο γεωμετρικός τόπος των σημείων του επιπέδου που ισαπέχουν από ένα δεδομένο σημείο.

Κάθε σημείο Μ του επιπέδου του κύκλου C(Κ,ρ) για το οποίο ισχύει ΜΚ < ρ, λέγεται εσωτερικό σημείο του κύκλου. Αντίστοιχα κάθε σημείο Ν του επιπέδου για το οποίο ΝΚ > ρ λέγεται εξωτερικό σημείο του κύκλου. Το σύνολο των εσωτερικών σημείων του κύκλου ονομάζεται εσωτερικό του κύκλου και ο κύκλος μαζί με το εσωτερικό του λέγεται κυκλικός δίσκος

Ένα ευθύγραμμο τμήμα που ενώνει δύο σημεία ενός κύκλου λέγεται χορδή του κύκλου. Όταν αυτή περιέχει το κέντρο του, λέγεται διάμετρος και τα άκρα της χαρακτηρίζονται  αντιδιαμετρικά.

Κατά τον Ευκλείδη (Στοιχεία, βιβλίο πρώτο), "Κύκλος εστί σχήμα επίπεδον υπό μιας γραμμής περιεχόμενον [ή καλείται περιφέρεια], πρός ήν αφ'ενός σημείου τών εντός τού σχήματος κειμένων πάσαι αι προσπίπτουσαι ευθείαι [πρός τήν τού κύκλου περιφέρειαν] ίσαι αλλήλαις εισίν. Κέντρον δε τού κύκλου το σημείον καλείται. Διάμετρος δε του κύκλου εστίν ευθεία τις διά τού κέντρου ηγμένη και περατουμένη εφ' εκάτερα τά μέρη υπό τής τού κύκλου περιφερείας, ήτις καί δίχα τέμνει τόν κύκλον".

Μία γωνία λέγεται επίκεντρη όταν η κορυφή της είναι το κέντρο ενός κύκλου. Κάθε γωνία μπορούμε να την καταστήσουμε επίκεντρη θεωρώντας έναν κύκλο (αυθαίρετης ακτίνας) γύρω από την κορυφή της.

Μία γωνία λέγεται εγγεγραμμένη όταν η κορυφή της είναι σημείο ενός κύκλου και οι πλρευρέ της τέμνουν τον κύκλο σε δύο σημεία .

Έστω ένας κύκλος και μια επίκεντρη γωνία που τέμνει τον κύκλο στα Α και Β. Τόξο ΑΒ είναι το σύνολο των σημείων του κύκλου που βρίσκονται εντός της γωνίας. Κάθε ζεύγος σημείων πάνω σε κύκλο ορίζει δύο επίκεντρες γωνίες, άρα και δύο τόξα. Αν η χορδή ΑΒ είναι διάμετρος τότε τα τόξα αυτά λέγονται ημικύκλια. Στην αντίθετη περίπτωση το ένα τόξο λέγεται μείζον και το άλλο έλασσον· μείζον είναι το τόξο της οποίας η επίκεντρη γωνία δεν είναι κυρτή.

Κυκλικός τομέας λέγεται κάθε γεωμετρικό σχήμα που αποτελείται από τα κοινά σημεία ενός κυκλικού δίσκου και μίας επίκεντρης γωνίας του.

Θεώρημα αντιστοιχίας τόξου-επίκεντρης Σε έναν κύκλο, ίσες επίκεντρες γωνίες βαίνουν σε ίσα τόξα. Αντίστροφα, σε ένα κύκλο ίσα τόξα φαίνονται υπό ίσες επίκεντρες γωνίες. Απόδειξη ευθέος: Ας είναι C(Κ,ρ) ένας κύκλος και ΑΚΒ, ΓΚΔ ίσες επίκεντρες γωνίες που βαίνουν αντίστοιχα στα τόξα ΑΒ και ΓΔ. Μετατοπίζουμε τη γωνία ΓΚΔ έτσι ώστε η ημιευθεία ΚΔ να ταυτιστεί με την ημιευθεία ΚΒ. Τότε η ημιευθεία ΚΓ θα ταυτιστεί με την ημιευθεία ΚΑ από την ισότητα των γωνιών και τα σημεία Γ και Δ θα ταυτιστούν με τα σημεία Α και Β αντίστοιχα επειδή ΚΑ = ΚΒ = ΚΓ = ΚΔ = ρ (ισότητα ευθύγραμμων τμημάτων). Επίσης, κάθε σημείο του τόξου ΓΔ συμπίπτει κατά τη μετατόπισή του με ένα σημείο του τόξου ΑΒ: αν υπήρχε σημείο του τόξου ΓΔ που δεν θα ανήκε στο τόξο ΑΒ, τότε θα έπρεπε να είναι είτε εξωτερικό είτε εσωτερικό σημείο του κύκλου, που είναι σε κάθε περίπτωση αδύνατο αφού είναι σημείο τόξου του κύκλου (απαγωγή σε άτοπο)· συνεπώς τα τόξα είναι ίσα.

Η μέτρηση του μήκους του κύκλου και του εμβαδού του κυκλικού δίσκου αποτέλεσε ένα σημαντικό θέμα με το οποίο ασχολήθηκαν σπουδαίοι μαθηματικοί της αρχαιότητας (Ιπποκράτης ο Χίος, Αρχιμήδης). Για το σκοπό αυτό χρησιμοποιήθηκαν τα κανονικά πολύγωνα, τα οποία με τη σειρά τους απασχόλησαν τους μαθηματικούς για περίοδο πάνω από 2.000 χρόνια (Αρχαιότητα - K.F. Gauss).

Κύκλος µε κέντρο Ο: Ονοµάζεται το σύνολο των σηµείων του επιπέδου που απέχουν από το Ο την ίδια απόσταση. Το σηµείο Ο το λέµε κέντρο του κύκλου και τη σταθερή απόσταση που συνήθως συµβολίζουµε µε ρ τη λέµε ακτίνα του κύκλου

Ίσοι κύκλοι : Είναι οι κύκλοι µε ίσες ακτίνες

Χορδή κύκλου : Ονοµάζουµε οποιοδήποτε ευθύγραµµο τµήµα µε άκρα δύο σηµεία του κύκλου .

∆ιάµετρος κύκλου : Ονοµάζεται η χορδή που διέρχεται από το κέντρο του κύκλου

Ηµικύκλιο : Ονοµάζεται κάθε ένα από τα δύο τόξα στα οποία χωρίζεται ένας κύκλος από µία διάµετρο του. Τα ηµικύκλια του ιδίου κύκλου είναι ίσα µεταξύ τους

Σχέση ακτίνας – διαµέτρου : Η διάµετρος είναι ίση µε δύο ακτίνες

Οµόκεντροι κύκλοι : Είναι οι κύκλοι που έχουν το ίδιο κέντρο και διαφορετική ακτίνα

Μαθήτρια : B3SM18 15-16