Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

企業研究方法 第 14 章 1 第 14 章 迴歸分析與複迴歸分析 1. 使用迴歸分析的時機 1. 使用迴歸分析的時機 2. 最小平方法在迴歸分析上的意義 2. 最小平方法在迴歸分析上的意義 3. 迴歸分析的假設 3. 迴歸分析的假設 4. 各種 R² 與偏判定 4. 各種 R² 與偏判定 5. 報表的分析與管理上的意涵.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "企業研究方法 第 14 章 1 第 14 章 迴歸分析與複迴歸分析 1. 使用迴歸分析的時機 1. 使用迴歸分析的時機 2. 最小平方法在迴歸分析上的意義 2. 最小平方法在迴歸分析上的意義 3. 迴歸分析的假設 3. 迴歸分析的假設 4. 各種 R² 與偏判定 4. 各種 R² 與偏判定 5. 報表的分析與管理上的意涵."— Μεταγράφημα παρουσίασης:

1 企業研究方法 第 14 章 1 第 14 章 迴歸分析與複迴歸分析 1. 使用迴歸分析的時機 1. 使用迴歸分析的時機 2. 最小平方法在迴歸分析上的意義 2. 最小平方法在迴歸分析上的意義 3. 迴歸分析的假設 3. 迴歸分析的假設 4. 各種 R² 與偏判定 4. 各種 R² 與偏判定 5. 報表的分析與管理上的意涵 5. 報表的分析與管理上的意涵 6. 逐步迴歸 6. 逐步迴歸  本章的學習主題 

2 企業研究方法 第 14 章 2 一般來說,我們利用迴歸分析是想瞭解: 1. 能否找出一個線性方程式,用來說明一組預測變 數 ( Xi ) 與效標變數 ( Y ) 的關係。 2. 瞭解這個方程式的預測能力如何?即其關係強度 有多大。 3. 整體關係是否達到顯著水準? 4. 在解釋效標變數的變異時,是否只採用某些預測 變數即具有足夠的預測力。 14.1 迴歸分析的基本統計概念

3 企業研究方法 第 14 章 3 一般而言,迴歸模式的型態為: Y=α + β 1 X 1 + β 2 X 2 + …….+ β m X m + ε 其中, α 與 β 為迴歸母數 (j = 1, 2, ……, m) , ε 為誤差項。 而在迴歸分析中,如果預測變數 (X i ) 只有一個,則稱之為簡 單迴歸分析。如果預測變數有二個以上,則稱為多元迴歸或 複迴歸分析。 Y = a + b 1 X 1 ………..( 簡單迴歸 ) Y = a + b 1 X 1 + b 2 X 2 +……+ b m X m ( 複迴歸 ) 14.2 簡單迴歸與複迴歸

4 企業研究方法 第 14 章 迴歸分析的基本假定 1. 常態性與變異同質性 (normality and equality of variance) 2. 殘差獨立性 (independence) 每個殘差彼此之間是統計獨立的,觀察值之 間彼此不會互相影響,若違反此假設,估計 量會缺乏效率性。 每個殘差彼此之間是統計獨立的,觀察值之 間彼此不會互相影響,若違反此假設,估計 量會缺乏效率性。

5 企業研究方法 第 14 章 迴歸分析的基本假定 3. 直線性 (linearity) 即所有抽樣樣本分配的平均數 ( μ Y/X ) 均 落在母群迴歸線上 即所有抽樣樣本分配的平均數 ( μ Y/X ) 均 落在母群迴歸線上 4. e i ~ N 〔 0,1 〕 誤差其分配服從平均數為 0 ,變異數為 1 的常態分配,且各誤差項間彼此獨立 誤差其分配服從平均數為 0 ,變異數為 1 的常態分配,且各誤差項間彼此獨立

6 企業研究方法 第 14 章 迴歸分析的基本假定 迴歸方程式滿足迴歸的基本假設,則此迴歸方程式具有線 性特性,並稱為線性迴歸。 圖 線性迴歸模型

7 企業研究方法 第 14 章 最小平方法 求取最適合迴歸線的方法即為最小平方法,而最小平方法即是使各點至此線之平行於Y軸的距離 的平方和變為最小的求解方法 ,即: 或

8 企業研究方法 第 14 章 8 根據現有的資料建立一個迴歸模式時, 必須檢定此模式與資料的符合程度,稱 為適合度 (goodness of fit) 。檢定適合 度最常用的量數是 R² (R- square) ,或 稱判定係數 (coefficient of determination) 。 根據現有的資料建立一個迴歸模式時, 必須檢定此模式與資料的符合程度,稱 為適合度 (goodness of fit) 。檢定適合 度最常用的量數是 R² (R- square) ,或 稱判定係數 (coefficient of determination) 。 迴歸模式之適合度及判定係數

9 企業研究方法 第 14 章 9 樣本的 R² 是估計模式適合度的一個最佳估 計值,但卻非母群 R² 的不偏估計值。因此 要估計母群的 R² 時,須加以調整。因此應 改用修正後的 R² (Adj-R²) 會比較正確。 樣本的 R² 是估計模式適合度的一個最佳估 計值,但卻非母群 R² 的不偏估計值。因此 要估計母群的 R² 時,須加以調整。因此應 改用修正後的 R² (Adj-R²) 會比較正確。 迴歸模式之適合度及判定係數

10 企業研究方法 第 14 章 偏判定 上式F檢定,分子代表模型加入變數後,解釋能力 提高的部份,而分母則代表加入變數後,仍無法解 釋的部份。若F值顯著則代表變數確實有明顯的解 釋效果,可加入迴歸模型中。

11 企業研究方法 第 14 章 共線性 若迴歸式 Y=a+b 1 X 1 +b 2 X 2 + ... +b m X m ,則其共線性是指當某一個自變數 與其他的自變數之具有高度相關 ( 例如 X1 與 X2) 。 共線性分析可讓我們檢查共線性資料是否 存在並評估共線性是否影響參數的建立。 共線性分析可讓我們檢查共線性資料是否 存在並評估共線性是否影響參數的建立。

12 企業研究方法 第 14 章 共線性 共線性的後果: (1) 即使變數不斷的增加,判定係數大小還是難以增加。 (2) 難以分辨個別解釋變數的解釋能力。 (3) 以最小平方法 (OLS) 求出的估計量雖仍是最佳線性不 偏估計量 (BLUE) ,但估計數的變異變大 (VIF 增加 ) , 偏估計量 (BLUE) ,但估計數的變異變大 (VIF 增加 ) , 會使得估計不準。 會使得估計不準。 (4) 由於變數間之相關性,迴歸係數符號有時會錯誤。

13 企業研究方法 第 14 章 共線性 2. 共線程度的判斷: (1) 看相關係數矩陣,若相關係數大於 0.9 ,此兩個變數便有 共線性的嫌疑。 共線性的嫌疑。 (2) 允差 (Tolerance value) :把單一解釋變數當被解釋變 數,把其他解釋變數當做依變數進行迴歸,允差值越 數,把其他解釋變數當做依變數進行迴歸,允差值越 小,代表越有共線性的可能,一般最低要求為允差必須 小,代表越有共線性的可能,一般最低要求為允差必須 大於 0.5 。 大於 0.5 。 (3) VIF (variance inflation factor) :允差的倒數,即 VIF=1/ 允差,因此若 VIF 大於 2 代表有共線性的可能,一 VIF=1/ 允差,因此若 VIF 大於 2 代表有共線性的可能,一 般要求 VIF 要小於 2 。 般要求 VIF 要小於 2 。

14 企業研究方法 第 14 章 共線性 3. 共線性之解決方法: (1) 刪去有共線性可能的解釋變數,進行迴歸分析。 (2) 就整體模式,將模式直接引用作為預測值計算 之用,而不要去解釋個別變數之迴歸係數。 之用,而不要去解釋個別變數之迴歸係數。 (3) 直接探討每個解釋變數與被解釋變數之間的相 關係數,而不做整體模式之解釋。 關係數,而不做整體模式之解釋。

15 企業研究方法 第 14 章 迴歸的殘差分析 在 Y=α + βXi + εi 式中, εi 稱為誤差 ( 殘差 ) ,而誤差 項間彼此是否獨立不僅影響了迴歸的基本假設,也 影響了迴歸式的好壞。 為了鑑定誤差項是否獨立,可計算杜賓-瓦特森統 計值 ( 簡稱 DW 值 ) ,或者觀察誤差值的分佈型態,或 檢查誤差值的正負符號。 實務上,DW值如果介於 1.5 到 2.5 之間,即表示誤 差項之間並無自我相關現象存在。

16 企業研究方法 第 14 章 16 ε 與 X 呈隨機分佈,表示迴歸模式與 其基本假設並無明顯的違背。 迴歸方程式非線性,即 Y = α + β X不 存在,此時我們可用取、或補救。 圖 14-2 迴歸殘差分析 14.8 迴歸的殘差分析 + - 0 + - 0

17 企業研究方法 第 14 章 17 ε i 非獨立,與X有關。 變異數非齊一。 14.8 迴歸的殘差分析 圖 14-2 迴歸殘差分析 + - 0 + - 0

18 企業研究方法 第 14 章 迴歸模式的調整 14.9 迴歸模式的調整 圖中虛線代表一般無偏誤的觀察值, 而實線則代表偏誤值。虛線部份代表 實際上應產生的迴歸線,但因偏誤值 的原因,而產生實線部份斜率改變的 錯誤結果。 若偏誤值的數值太大,更有可能產生 如左圖般整條迴歸線完全被扭曲的不 良情形。 圖 12-4 極端偏誤值影響模型之預測 x y y 圖 14-3 極端偏誤值影響模型之探討

19 企業研究方法 第 14 章 複迴歸分析之決定過程 步驟一:複迴歸分析之目的 (1) 最大化解釋變數的預測能力。 (2) 比較兩組以上解釋變數的預測能力。 步驟二:複迴歸分析之研究設計 (1) 檢定力與樣本大小 (2) 解釋變數的固定與隨機效果 (3) 創造額外的變數

20 企業研究方法 第 14 章 複迴歸分析之決定過程 步驟三:複迴歸分析之假設 在進行複迴歸分析時,最基本的假設包括 (1) 常態性與變異同質性, (2) 殘差獨立 性, (3) 直線性。 步驟四:估計迴歸模式與評量模式適合度 在推估迴歸模式時,首先要檢視迴歸變量 是否符合迴歸假設

21 企業研究方法 第 14 章 複迴歸分析之決定過程 步驟五:解釋迴歸變量 迴歸變量之解釋通常利用 Beta 係數來解釋,一般 是將解釋變數在估計之前先做標準化的動作,以避 是將解釋變數在估計之前先做標準化的動作,以避 免每個變數使用不同衡量單位的問題。 免每個變數使用不同衡量單位的問題。 步驟六:結果的確認 在利用迴歸模型進行預測時,誤差除了原本樣本的 誤差外,抽樣誤差也可能影響模型之解釋力。 誤差外,抽樣誤差也可能影響模型之解釋力。

22 企業研究方法 第 14 章 複迴歸分析之決定過程 在多元迴歸中,我們必須決定預測變數進 入迴歸模型之順序,通常有以下幾種方法 可供選擇: 在多元迴歸中,我們必須決定預測變數進 入迴歸模型之順序,通常有以下幾種方法 可供選擇: (1) 強迫進入法 (enter) (1) 強迫進入法 (enter) (2) 強迫去除法 (remove) (2) 強迫去除法 (remove) (3) 順向選擇法 (forward) (3) 順向選擇法 (forward) (4) 反向淘汰法 (backward) (4) 反向淘汰法 (backward) (5) 逐步選擇法 (stepwise) (5) 逐步選擇法 (stepwise)

23 企業研究方法 第 14 章 複迴歸分析之決定過程 1. 用順向選擇法時,第一個進入迴歸方程式的變數 是與依變數有最大相關的變數,第一個變數進入 模型之後,再以判定係數值 (F) 檢查第二個變數 該誰進入,依此類推,直到沒有其他的變數符合 選取的標準為止。 2. 用反向淘汰法時,先將所有的變數放入迴歸方程 式中,然後根據淘汰標準一一將不符合標準的變 數加以淘汰。

24 企業研究方法 第 14 章 選擇預測變數的程序 3. 逐步選擇法是結合順向選擇法與反向淘汰法二種 程序。首先採用順向選擇法,選進與依變數有 最大相關的變數,接下來以反向淘汰法檢查此 變數是否須加以排除。 為了避免相同的變數重複地被選進或排除,選 進的標準必須小於淘汰的標準,或者我們可以 說選進變數的F值大於淘汰變數的F值。

25 企業研究方法 第 14 章 25 圖 選擇預測變數之進入程序 X5X5 X3X3 Y 在單純使用 X 3 變數來解釋 Y 時,因為 不能完全解釋,因此我們加入 X 5 變 數來增加模型的解釋效果。但因為 X 3 與 X 5 有重複解釋的部份,因此我 們得先確定兩個變數的效果,來決 定由何變數先進入模型。

26 企業研究方法 第 14 章 迴歸模型範例(簡單迴歸) Y (組織知識管理績效 )= + × 顧客資本 模式未標準化係數 B 之估計值 標準誤標準化係數 Beta 分配 t顯著性 ( 常數 ) — 顧客資本 IC_CF R0.649 R2R2R2R Adj- R F D-W2.063

27 企業研究方法 第 14 章 迴歸模型範例(複迴歸) Y = + 0.155× 顧客資本 × 人力資本- 0.026× 結構資本 (1) + 0.091× 結構資本 (2) + 0.091× 結構資本 (2) 依變數 = 知識管理績效 未標準化係數 之 B 之估計值 標準化係數 之 Beta 分配 t顯著性 ( 常數 ) 0.968- 顧客資本 (IC_CF) 人力資本 (IC_HF) 結構資本之交易成本導向 (IC_SF1) 結構資本之創新運作導向 (IC_SF2) R2R2R2R F P0.000 Adj R D-W2.154


Κατέβασμα ppt "企業研究方法 第 14 章 1 第 14 章 迴歸分析與複迴歸分析 1. 使用迴歸分析的時機 1. 使用迴歸分析的時機 2. 最小平方法在迴歸分析上的意義 2. 最小平方法在迴歸分析上的意義 3. 迴歸分析的假設 3. 迴歸分析的假設 4. 各種 R² 與偏判定 4. 各種 R² 與偏判定 5. 報表的分析與管理上的意涵."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google