Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

3 Ο ΓΕΛ ΚΗΦΙΣΙΑΣ Θ ΕΜΑ Ε ΡΓΑΣΙΑΣ : Τ ΥΧΑΙΟΤΗΤΑ ΚΑΙ ΑΙΤΙΟΚΡΑΤΙΑ Τάξη: Β Τμήμα:4 Υπεύθυνος Καθηγητής: Μπαλής Δημήτριος Σχολικό έτος: 2013 - 2014.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "3 Ο ΓΕΛ ΚΗΦΙΣΙΑΣ Θ ΕΜΑ Ε ΡΓΑΣΙΑΣ : Τ ΥΧΑΙΟΤΗΤΑ ΚΑΙ ΑΙΤΙΟΚΡΑΤΙΑ Τάξη: Β Τμήμα:4 Υπεύθυνος Καθηγητής: Μπαλής Δημήτριος Σχολικό έτος: 2013 - 2014."— Μεταγράφημα παρουσίασης:

1 3 Ο ΓΕΛ ΚΗΦΙΣΙΑΣ Θ ΕΜΑ Ε ΡΓΑΣΙΑΣ : Τ ΥΧΑΙΟΤΗΤΑ ΚΑΙ ΑΙΤΙΟΚΡΑΤΙΑ Τάξη: Β Τμήμα:4 Υπεύθυνος Καθηγητής: Μπαλής Δημήτριος Σχολικό έτος:

2 Π ΡΟΛΟΓΟΣ Φέτος στην ερευνητική εργασία αποφασίσαμε να επιλέξουμε το συγκεκριμένο θέμα για δύο λόγους: 1. Θέλαμε να μάθουμε να διακρίνουμε τα αιτιοκρατικά από τα τυχαία φαινόμενα.

3 1. Η 2. Να ανακαλύψουμε την σημαντική επίδραση των μαθηματικών στην καθημερινή μας ζωή.

4 Ο ΜΑΔΕΣ Πρώτη ομάδα : Τυχαιότητα 1. Σταμπουλίδου Ιωάννα 2. Στεργιανός Ιωάννης 3. Στρογγυλού Μαρία-Ελένη 4. Φωτεινού Νιόβη 5. Χάλκου Μαρία

5 Δεύτερη ομάδα : Αιτιοκρατία 1. Μαγδαληνού Δήμητρα 2. Τζωρτζάκη Ζωή 3. Τικοπούλου Άννυ 4. Τσιακαλάκη Άννα 5. Τσιώλη Κωνσταντίνα 6. Χρα Αγγελική

6 Τρίτη ομάδα : Χάος 1. Σπανουδάκη Παναγιώτα 2. Συμεωνίδου Έλενα 3. Φρατζεσκάκη Αγγελική 4. Χασομέρη Γιούλη

7 Τέταρτη ομάδα : Χάος 1. Σκορδίλης Νίκος 2. Συκιώτης Στέλιος 3. Τζώτζης Άγγελος 4. Φώσκολος Θοδωρής 5. Χαραμαράς Θωμάς

8 ΣΚΟΠΟΣ ΤΗΣ ΕΡΓΑΣΙΑΣ Σκοπός της ερευνητικής προσπάθειας ήταν να διερευνήσει την αποτελεσματικότητα μιας βιωματικού τύπου διδακτικής παρέμβασης με καθοδήγηση και ανατροφοδότηση η οποία αναφέρεται στην κατανόηση της έννοιας του τυχαίου από μαθητές και μαθήτριες με την βοήθεια του αλληλεπιδραστικού εκθέματος «Αυτόματον».

9 Στόχος της έρευνας ήταν να διερευνήσει κατά πόσο η επίλυση του συγκεκριμένου ερωτήματος που το έκθεμα θέτει συμβάλλει στην τροποποίηση / αλλαγή των εναλλακτικών αντιλήψεων των μαθητών σχετικά με την έννοια της τύχης/ του τυχαίου

10 του μη τυχαίου και ωθεί προς την θεμελίωση των επιστημονικά αποδεκτών αντιλήψεων για τις αντίστοιχες έννοιες. Απώτερος σκοπός της ήταν να χρησιμοποιηθεί η αλλαγή αυτή για να διδαχθεί, κατά τον πλέον αποτελεσματικό τρόπο, η έννοια των πιθανοτήτων.

11 ΑΙΤΙΟΚΡΑΤΙΑ Ως αιτιοκρατία ορίζουμε εκείνη τη διαδικασία, κατά την οποία ένα φαινόμενο αντιμετωπίζεται κατά τον ίδιο τρόπο πάντοτε και δίνει τα ίδια αποτελέσματα, τα οποία είναι προβλέψιμα με ακρίβεια. Για παράδειγμα ο Νόμος της Βαρύτητας, η ηλεκτρόλυση, η επίλυση μιας πρωτοβάθμιας εξίσωσης. Στα αιτιοκρατικά φαινόμενα, αν είναι γνωστές οι αρχικές συνθήκες, τότε το αποτέλεσμα είναι προδιαγεγραμμένο.

12 ΤΥΧΑΙΟΤΗΤΑ Η τυχαιότητα ορίζεται ως εκείνη η διαδικασία, κατά την οποία ένα φαινόμενο μπορεί μεν να επαναληφθεί κατά τον ίδιο τρόπο πολλές φορές, αλλά ενώ γνωρίζουμε όλα τα δυνατά αποτελέσματα, δε γνωρίζουμε σε κάθε επανάληψη ποιο αποτέλεσμα θα προκύψει. Η ρίψη ενός νομίσματος «γράμματα ή κεφάλι», η ρίψη ενός ζαριού κλπ.

13 ΑΡΙΣΤΟΤΕΛΗΣ ( π.Χ. ) π.Χ. Ο πρώτος ο οποίο ανέδειξε τη διάκριση μεταξύ τυχαιότητας και αιτιοκρατίας ήταν ο Αριστοτέλης, στο έργο του «Φυσικά». Μέχρι εκείνη την εποχή κάθε τι, το οποίο δεν ήταν αιτιοκρατικό οι άνθρωποι το απέδιδαν στη θέληση των θεών.

14 ΤΟ «ΑΥΤΟΜΑΤΟΝ» Στην προσπάθεια μας να διερευνήσουμε, κατά πόσο είναι εύκολο να αποφασίσει κάποιος αν χρειάζεται η αιτιοκρατική ή η τυχαιοκρατική μέθοδος, για να διερευνηθεί ένα φαινόμενο, (το οποίο αποτελεί το αντικείμενο αυτού του project), θέσαμε σε εφαρμογή μία μηχανή – παιχνίδι, το οποίο ονομάσαμε «Αυτόματο».

15 Το «Αυτόματον» είναι μία λειτουργική κατασκευή, η οποία αποτελείται από : Τέσσερα τετράγωνα πλακίδια, ίσου εμβαδού. Κάθε πλακίδιο φέρει δύο όψεις από τις οποίες η μια έχει λευκό χρώμα και η άλλη μαύρο. Μία τετράγωνη πλάκα, υπερδιπλάσιας πλευράς από αυτή των πλακιδίων, στην οποία υπάρχουν τέσσερα ίσα χωρίσματα – υποδοχές, συμμετρικά ως προς το κέντρο της πλάκας. Στις υποδοχές αυτές τοποθετούνται τα πλακίδια.

16 Η πλάκα φέρει στο κέντρο του τετραγώνου της μία οπή, από την οποία μπορεί να περνά κατακόρυφα ένας πύρος (άξονας), ώστε να μπορεί να περιστρέφεται, γύρω από αυτόν. Το συνολικό σύστημα είναι εγκατεστημένο σε κατάλληλη βάση στην οποία είναι τοποθετημένος σταθερά ο πύρος. Στην επόμενη εικόνα παρουσιάζεται το έκθεμα «Αυτόματον»

17 Αλληλεπιδρώντας με το «Αυτόματον» ο/η μαθητής /τρια μπορεί να αλλάζει την άνω όψη σε κάθε ένα από τα πλακίδια που επιθυμεί ώστε να παρουσιάζεται η λευκή ή η μαύρη όψη τους. Μπορεί επίσης να περιστρέφει την πλάκα παράλληλα, προς τη βάση και κατακόρυφα προς τον πύρο, ο οποίος την συγκρατεί πάνω στην βάση. Στόχος είναι να καταφέρει ώστε η επάνω όψη όλων των πλακιδίων να είναι του ίδιου χρώματος (δηλαδή να δείχνουν όλα λευκό ή όλα μαύρο).

18 Το αλληλεπιδραστικό έκθεμα «Αυτόματο»

19 Θέσαμε σε εφαρμογή το «Αυτόματο» και απαντήσαμε σε ερωτηματολόγιο, κατά πόσον η διαδικασία επίλυσης του προβλήματος, το οποίο θέτει το «παιχνίδι» αυτό είναι τυχαία ή αιτιοκρατική.

20 Δηλαδή αν το πρόβλημα θα λυθεί με τυχαίες επιλογές (όπως το να ρίχνεις 4 κέρματα και να προσδοκάς να φέρουν και τα 4 τέσσερα στην επάνω όψη γράμματα) ή μπορεί να βρεθεί ένας αλγόριθμος (αιτιοκρατική λύση), όπου με συγκεκριμένες προκαθορισμένες επιλογές, να καταφέρουμε να επιλύσουμε το πρόβλημα.

21 Η κυρίαρχη απάντηση, η οποία παρατίθεται στο γράφημα ήταν ότι το πρόβλημα λύνεται με τυχαιότητα. Δηλαδή αλλάζοντας με τυχαίο τρόπο την όψη των πλακιδίων κάποια φορά θα επιτευχθεί ομοχρωμία στην επάνω όψη.

22 ΔΙΔΑΚΤΙΚΗ ΠΑΡΕΜΒΑΣΗ Ακολούθησε αλληλεπιδραστική διαδικασία με το «Αυτόματο», κατά την οποία χρησιμοποιήσαμε το παιχνίδι, παίξαμε με αυτό, κάναμε διάλογο μεταξύ μας και με τον υπεύθυνο καθηγητή και, χρησιμοποιώντας κυρίως επαγωγική μέθοδο (χρησιμοποιώντας αρχικά μόνο 2 πλακίδια, κατόπιν 3 και μετά 4) καταλήξαμε στο συμπέρασμα ότι μπορούμε να ανακαλύψουμε έναν αλγόριθμο, ο οποίος να λύνει το πρόβλημα με συγκεκριμένα βήματα, παρακάμπτοντας την τυχαιότητα.

23 1 Ο ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ Θεωρείς ότι η λύση στο πρόβλημα του Αυτόματου είναι τυχαία ή μπορεί να πραγματοποιηθεί με ένα πεπερασμένο αριθμό κινήσεων.

24 Αν στο πρόβλημα του αυτόματου δεν στρέφουμε τη πλάκα, αλλά αυτή παραμένει σταθερή, τότε πιστεύεις ότι η λύση του είναι τυχαία;

25 Αν το αυτόματο αποτελείτο από 2 πλακίδια, τότε πιστεύεις ότι η λύση του θα ήταν τυχαία;

26 Κατά την γνώμη σου υπολογίζεται η τυχαιότητα ενός φαινόμενου;

27 Με ποια από τις παρακάτω λέξεις θα χαρακτήριζες μία δραστηριότητα ως μη τυχαία;

28 Με ποια από τις παρακάτω λέξεις θα χαρακτήριζες μία διαδικασία ως τυχαία;

29 Σε ποιον από τους παρακάτω παράγοντες οφείλεται, κατά την γνώμη σου η τυχαιότητα μιας δραστηριότητας;

30 2 Ο ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ Το αυτόματο αποτελεί τυχαία ή μη τυχαία διαδικασία;

31 Στο πρώτο ερώτημα έδωσες την ίδια απάντηση, πριν ασχοληθείς με το αυτόματο ή διαφορετική;

32 Θεωρείς ότι έκανες λάθος στην αρχική σου εκτίμηση, για το αν το αυτόματο αποτελεί τυχαία ή μη τυχαία διαδικασία;

33 Μετά την δραστηριότητα που πραγματοποίησες με το αυτόματο, πως θα χαρακτήριζες τη διαδικασία επίλυσης, του προβλήματος του αυτόματου;

34 Αν το αυτόματο είναι τυχαία ή όχι διαδικασία, πιστεύεις ότι εξαρτάται από το πλήθος των πλακιδίων, που μπορεί να το αποτελούν;

35 Αν τα πλακίδια δεν περιστρέφονται, πιστεύεις ότι η φύση του προβλήματος από μη τυχαίο σε τυχαίο αλλάζει ;

36

37 ΣΥΜΠΕΡΑΣ Μ ΑΤΑ Η αντιμετώπιση του προβλήματος, το οποίο έθεσε το «Αυτόματο» μας έδειξε ότι υπάρχει σύγχυση, σχετικά με την εφαρμογή της τυχαιότητας ή της αιτιοκρατίας στην αξιολόγηση και διάκριση των φαινομένων. Η διδακτέα ύλη των μαθημάτων Φυσικής, Μαθηματικών δεν περιλαμβάνει αυτό το θέμα, το οποίο το συναντάμε τόσο στην καθημερινότητα, όσο και στις επιστημονικές προσεγγίσεις.

38 Ολοκληρώνοντας, το πρόβλημα που τίθεται μέσω του συγκεκριμένου εκθέματος μπορεί να τεθεί στους μαθητές και τις μαθήτριες και πριν από την διδασκαλία των πιθανοτήτων οδηγώντας στην εκτίμηση του τρόπου συλλογισμού των μαθητών σχετικά με αυτές.

39 Εξ άλλου σύμφωνα με αρκετούς ερευνητές (Fischbein, 1975; Hawkins & Kapadia, 1984; Paparistodemou & Philippou, 2002, κά) οι μαθητές διαθέτουν διαισθήσεις (σωστές ή λανθασμένες) σχετικά με τις έννοιες των πιθανοτήτων, πριν ακόμη διδαχθούν σχετικά θέματα, τις οποίες χρησιμοποιούν στους συλλογισμούς τους.

40 Κατά τον Fischbein, (1975) είναι απαραίτητο οι μαθητές, ακόμη και πριν την διδασκαλία, να εξασκηθούν στη διάκριση των φαινομένων τα οποία διέπονται από τυχαιότητα έναντι αυτών τα οποία διέπονται από αιτιοκρατία. Η ενασχόληση των παιδιών με παιγνίδια, τα οποία απαιτούν πιθανότητες κατά τους Paparistodemou & Philippou (2002, p. 76) οδηγεί σε ανάπτυξη της διαίσθησής τους για θέματα σχετικά με τις πιθανότητες.

41 ΒΙΒΛΙΟΓΡΑΦΙΑ Αριστοτέλους Άπαντα, 41, Φυσικής Ακρόασις (Φυσικά) Βιβλία Α, Β. Εκδόσεις Κάκτος. Αριστοτέλους Περί Φύσεως. Το Δεύτερο Βιβλίο των Φυσικών. Εισαγωγή Μετάφραση Σχόλια Βασίλης Κάλφας. Εκδόσεις Πόλις. Davis, M. (2001) Μηχανές της Λογικής. Εκδόσεις Εκκρεμές. Εθνική Εστία Επιστημών, Υπουργείο Εθνικής Παιδείας και Θρησκευμάτων, Εθνικό Ίδρυμα Νεότητας, Αθήνα, Σεπτέμβριος 1997, Επιμέλεια: Καθηγητ έ ς Σπύρος Πνευματικός, Δημήτρης Μπαλής.

42 Κωνσταντόπουλος, Τ. (2002). Τύχη και πρόβλεψη, Ομιλία, Μαθηματικό Τμήμα Πανεπιστημίου Πατρών. Παπασταυρίδης, Σ. (1985). Πιθανότητα : Ιστορία και Πράξη, Ευκλείδης Γ, Τεύχος 10, ΕΜΕ Παρασκευόπουλος, Ν., Ι. (1993)α. Μεθοδολογία Επιστημονικής Έρευνας., Τόμος 1. Τουμάσης, Μ.(2004), Σύγχρονη διδακτική των Μαθηματικών, σ. 111, εκδ. Gutenberg, Αθήνα. Φίλιας, Β. (1996). Εισαγωγή στην Μεθοδολογία και τις Τεχνικές των Κοινωνικών Ερευνών. Εκδόσεις Gutenberg, Αθήνα.

43 Ernest, P. (1991) The Philosophy of Mathematics Education, p. 144, The Falmer Press, London. Fischbein, E., Pampu, I., and Minzat, I. (1970) Comparison of ratios and the chance concept in children, Child Development 41, pp Fischbein, E. (1975) The Intuitive Sources of Probabilistic Thinking in Children, Reidel, Dordrecht, The Netherlands Fischbein, E. (1983) Intuition and Proof, For the Learning of Mathematics, 3(2), 9-19 Fischbein, E., & Gazit A. (1984) Does the Teaching of Probability Improve Probabilistic Intuitions? Educational Studies in Mathematics 15

44 Fiscbein, E., Nello, S.M., Marino, S.M. (1991). Factors Affective Probabilistic Judgments in Children and Adolescents, Studies in Mathematics 22, pp , Kluwer Academic Publishers Piaget & Inhelder, Β. (1951). La Genèse de l’idée de Hazard chez l’Enfant. Paris : Press Universitaire de France. Piaget, J. (1972). The Principles of Genetic Epistemology, trans W. Mays. London: Routlege and Kegan Paul Piaget, J., & Inhelder, B. (1975) The origin of the idea of chance in children, Routledge & Kegan Paul, London


Κατέβασμα ppt "3 Ο ΓΕΛ ΚΗΦΙΣΙΑΣ Θ ΕΜΑ Ε ΡΓΑΣΙΑΣ : Τ ΥΧΑΙΟΤΗΤΑ ΚΑΙ ΑΙΤΙΟΚΡΑΤΙΑ Τάξη: Β Τμήμα:4 Υπεύθυνος Καθηγητής: Μπαλής Δημήτριος Σχολικό έτος: 2013 - 2014."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google