Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Ανάλυση Συστημάτων Αυτομάτου Ελέγχου: Αρμονική Απόκριση & Διαγράμματα Bode ΚΕΣ 01 – Αυτόματος Έλεγχος.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Ανάλυση Συστημάτων Αυτομάτου Ελέγχου: Αρμονική Απόκριση & Διαγράμματα Bode ΚΕΣ 01 – Αυτόματος Έλεγχος."— Μεταγράφημα παρουσίασης:

1 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Ανάλυση Συστημάτων Αυτομάτου Ελέγχου: Αρμονική Απόκριση & Διαγράμματα Bode ΚΕΣ 01 – Αυτόματος Έλεγχος

2 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης ◊Παρασκευόπουλος [2004]: Κεφάλαιο 8: Ενότητες ◊Παρασκευόπουλος [2005]: Εφαρμογές, Κεφάλαιο 8 - Ενότητες 8.1 & 8.2 ◊DiStefano [1995]: Chapter 15 ◊Tewari [2005]: Chapter 2: Sections 2.3 & 2.8 Βιβλιογραφία Ενότητας

3 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis ◊Η μελέτη της συμπεριφοράς ενός Σ.Α.Ε στο χώρο της συχνότητας είναι ιδιαίτερα διαδεδομένη, ιδιαίτερα στις κλασσικές μεθόδους ανάλυσης: ◊Bode ◊Nyquist, ◊Nichols ◊Παρόλο που η ανάλυση στο πεδίο του χρόνου μπορεί να μας δώσει ακριβέστερα τη δυναμική συμπεριφορά του συστήματος και επομένως είναι προσφορότερη για την ανάλυση Σ.Α.Ε, η μελέτη της συμπεριφοράς των Σ.Α.Ε στο πεδίο της συχνότητας είναι ευκολότερη και μπορεί να χρησιμοποιηθεί για τον καθορισμό προδιαγραφών για το σύστημα ◊Με βάση τα προηγούμενα είναι φανερό ότι η σχεδίαση Σ.Α.Ε είναι ευκολότερη στο πεδίο της συχνότητας. Επομένως χρειάζεται και η ανάλυση στο ίδιο πεδίο ◊Επειδή η ανάλυση στο πεδίο του χρόνου μας δίνει επίσης σημαντικές επιπλέον πληροφορίες καλό είναι να συνδυάζεται με την ανάλυση στο πεδίο της συχνότητας. ◊Πολλά από τα χαρακτηριστικά της χρονικής απόκρισης (και συγκεκριμένα της βηματικής απόκρισης) σχετίζονται με χαρακτηριστικά της απόκρισης συχνότητας. Είναι ιδιαίτερα χρήιμο να γνωρίζουμε τις συσχετίσεις αυτές Εισαγωγή  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

4 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Αρμονική Απόκριση Συστημάτων ◊Απόκριση συχνότητας ονομάζουμε την απόκριση του συστήματος σε ημιτονοειδής διεγέρσεις. ◊Η απόκριση συχνότητας ενός συστήματος με συνάρτηση μεταφοράς H(s) δίνεται από τη σχέση Η(jω) και είναι μια μιγαδική συνάρτηση, με πλάτος |Η(ω)| και φάση Α(ω). ◊Η απόκριση συχνότητας πολλές φορές αναφέρεται ως Αρμονική Απόκριση ◊Η απόκριση συχνότητας πολλές φορές δεν εξετάζει τα μεταβατικά φαινόμενα. Αφορά την έξοδο του συστήματος στη μόνιμη κατάσταση ◊Τα χαρακτηριστικά της Αρμονικής Απόκρισης μας δίνουν σημαντικές πληροφορίες για τη συμπεριφορά ενός συστήματος σε σχέση με τη σχετική ευστάθεια του. Τέτοια χαρακτηριστικά είναι το: ◊Περιθώριο κέρδους G m (Gain Margin), και το Περιθώριο φάσης Φ PM (Phase Margin) ◊Υπάρχουν και άλλα χαρακτηριστικά της απόκρισης συχνότητας μέσω των οποίων μπορούμε να ορίσουμε της προδιαγραφές ενός Σ.Α.Ε: ◊Η μέση καθυστέρηση φάσης P D ◊Το εύρος ζώνης BW ◊Η τιμή και συχνότητα συντονισμού Μ p και ω p αντίστοιχα  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

5 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Παράδειγμα  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης ◊Απόκριση συχνότητας του συστήματος (βλέπε συνάρτηση freqs στη Matlab)

6 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Παράδειγμα  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης ◊Χάρτης πόλων μηδενικών του συστήματος (βλέπε συνάρτηση pzmap στη Matlab)

7 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Συσχέτιση Αρμονικής και Χρονικής Απόκρισης ◊Παρόλο που η απόκριση συχνότητας αφορά τη συμπεριφορά των κλειστών Σ.Α.Ε στη μόνιμη κατάσταση υπάρχει συσχέτιση ανάμεσα σε ορισμένα χαρακτηριστικά της χρονικής και της αρμονικής απόκρισης. ◊Συγκεκριμένα τα χαρακτηριστικά της αρμονικής απόκρισης: ◊Το εύρος ζώνης BW ◊Η τιμή συντονισμού Μ p ◊Η συχνότητα συντονισμού ω p ◊Συνδέονται με τα χαρακτηριστικά της βηματικής απόκρισης: ◊Μέγιστη τιμή y m της εξόδου ◊Χρόνος ανύψωσης T r ◊Περίοδος ταλάντωσης Τ  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

8 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Συστήματα πρώτης τάξης ◊Η απόκριση συχνότητας στα συστήματα 1ης τάξης περιγράφεται από τη σχέση: ◊Αποδεικνύεται ότι ισχύουν τα παρακάτω: ◊M p =y m =K ◊ω p =0 ◊Στο σχήμα έχουμε τα διαγράμματα Bode της  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

9 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Συστήματα πρώτης τάξης (ΙΙ)  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης ◊Η βηματική απόκριση του συστήματος με απόκριση συχνότητας ◊δίνεται στο διπλανό σχήμα. Προκύπτει Τ r = και επομένως BW≈92 rad/sec

10 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Συστήματα δεύτερης τάξης ◊Η απόκριση συχνότητας στα συστήματα 2ης τάξης περιγράφεται από τη σχέση: ◊Αποδεικνύεται ότι ισχύουν τα παρακάτω: ◊Το εύρος ζώνης ΒW και ο χρόνος ανύψωσης Τ r στη βηματική απόκριση είναι αντιστρόφως ανάλογα ◊Η συχνότητα συντονισμού ω p μπορεί να υπολογιστεί από τη περίοδο της ταλάντωσης της εξόδου στη βηματική απόκριση:  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

11 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Χαρακτηριστικά Απόκρισης Συχνότητας ◊Έστω. Γράφοντας την απόκριση συχνότητας στη μορφή: Έχουμε ζ=0.25, ω n =4. Άρα: ◊Η συχνότητα συντονισμού είναι rad/sec ◊Η τιμή συντονισμού είναι =20log 10 (2.03)=6.3 db  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

12 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Σχέση μέγιστης υπερύψωσης και σταθεράς απόσβεσης ζ  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης ◊Η μέγιστη υπερύψωση (overshoot) με είσοδο τη βηματική συνάρτηση δίνεται από τη σχέση ◊Από το διάγραμμα φαίνεται ότι η υπερύψωση είναι v=0.44, το οποίο συμφωνεί με τη τιμή:

13 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Σχέση χρόνου ανύψωσης και εύρους ζώνης  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης ◊Από τα διαγράμματα έχουμε BW=5.94 rad/sec, Tr=0.316 sec, και επομένως rad/sec

14 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Συστήματα ανώτερης τάξης ◊Δεν υπάρχει εύκολος τρόπος συσχετισμού ανάμεσα στην απόκριση συχνότητας και τη βηματική απόκριση για συστήματα ανώτερης τάξης (βαθμός του s στον παρονομαστή της συνάρτησης μεταφοράς μεγαλύτερος από δύο) ◊Σε αυτή τη περίπτωση το σύστημα ανώτερης τάξης προσεγγίζεται από ένα σύστημα δεύτερης τάξης: ◊Υπολογίζουμε τους πόλους του συστήματος ανώτερης τάξης ◊Βρίσκουμε τους δύο πόλους οι οποίοι βρίσκονται πλησιέστερα προς τον φανταστικό άξονα (πόλοι με το μεγαλύτερο πραγματικό μέρος). ◊Προσεγγίζουμε το σύστημα ανώτερης τάξης διατηρώντας μόνο τους δυο πιο πάνω πόλους  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

15 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Παράδειγμα: Προσέγγιση συστήματος ανώτερης τάξης με δευτεροβάθμιο σύστημα ◊Έστω το σύστημα με συνάρτηση μεταφοράς: ◊Οι πόλοι του ανωτέρω συστήματος είναι: p 1 =-1+j3.873, p 2 =-1-j3.873, p 3 =-5, p 4 =-5 ◊Το σύστημα ανώτερης τάξης μπορεί να γραφεί ως: ◊Οι πόλοι οι οποίοι βρίσκονται πλησιέστερα προς τον φανταστικό άξονα είναι οι: p 1 =-1+j3.873, p 2 =-1-j ◊Άρα το σύστημα μπορεί να προσεγγιστεί ως δευτεροβάθμιο της μορφής: για να μην έχουμε σφάλμα στη μόνιμη κατάσταση προκύπτει ότι Κ=16, άρα τελικά  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

16 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Προσέγγιση συστήματος ανώτερης τάξης με δευτεροβάθμιο σύστημα ◊Στο σχήμα επιδεικνύεται η βηματική απόκριση του συστήματος 4ης τάξης (μπλε) : ◊και δεύτερης τάξης (πράσινο)  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

17 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Προσέγγιση συστήματος ανώτερης τάξης με δευτεροβάθμιο σύστημα (II) ◊Στο σχήμα επιδεικνύεται η απόκριση συχνότητας (για την ακρίβεια τα διαγράμματα Bode) του συστήματος 4ης τάξης (μπλε) : ◊και δεύτερης τάξης (πράσινο)  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

18 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis ◊Τα διαγράμματα Bode είναι αναπαραστάσεις της απόκρισης συχνότητας (ή αρμονικής απόκρισης) H(jω) συναρτήσει της κυκλικής συχνότητας ω. ◊Επειδή η H(jω) είναι μια μιγαδική συνάρτηση έχουμε δύο αναπαραστάσεις, την αναπαράσταση του μέτρου |H(ω)| και της φάσης Α(ω). ◊Η διαφοροποίηση των διαγραμμάτων Bode σε σχέση με τα κλασικά διαγράμματα απόκρισης συχνότητας έγκειται στο γεγονός: ◊της χρήσης λογαριθμικού άξονα συχνοτήτων ω για μελέτη του συστήματος σε ένα μεγαλύτερο εύρος συχνοτήτων ◊της απεικόνισης του μέτρου σε decibels: Μ(ω)=20log10(|H(ω)|) ◊Με τη βοήθεια των διαγραμμάτων Bode μπορούμε να: ◊Ελέγξουμε την ευστάθεια κλειστών συστημάτων ◊Διερευνήσουμε τη σχετική ευστάθεια κλειστών συστημάτων με τη βοήθεια των περιθωρίων κέρδους και φάσης ◊Υπολογίσουμε το εύρος ζώνης κλειστών και ανοικτών συστήματος ◊Υπολογίσουμε τη συχνότητα συντονισμού του συστήματος (ανοικτού ή κλειστού) Διαγράμματα Bode  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

19 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis ◊Έστω η αρμονική απόκριση ενός συστήματος εκφράζουμε την παραπάνω συνάρτηση σε μορφή Bode η ποσότητα K B ονομάζεται κέρδος Bode Κατασκευή Διαγραμμάτων Bode  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

20 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis ◊Το πλάτος Μ(ω) της απόκρισης συχνότητας σε decibel δίνεται από τη σχέση: η φάση Φ(ω) δίνεται από τη σχέση Κατασκευή Διαγραμμάτων Bode (II)  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

21 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Διάγραμμα Bode συναρτήσεων της μορφής ◊Τα διαγράμματα Bode του κέρδους της συνάρτησης Bode, δηλαδή σταθερών ποσοτήτων K B έχει τη μορφή: ◊Αμφότερα τα διαγράμματα πλάτους και φάσης είναι ευθείες. ◊Αν η σταθερά K B έχει αρνητική τιμή τότε η ευθεία στο διάγραμμα φάσης είναι στις ο αλλιώς είναι στις 0 ο  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

22 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Διάγραμμα Bode συναρτήσεων της μορφής ◊Τα διαγράμματα l πόλων στο μηδέν έχουν τη μορφή: ◊Για κάθε πόλο στο μηδέν η κλίση στο διάγραμμα μέτρου μειώνεται κατά - 20db/δεκάδα (δεκαπλασιασμός συχνότητας). ◊Για κάθε πόλο στο μηδέν η φάση μειώνεται κατά -90 ο.  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

23 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Διάγραμμα Bode συναρτήσεων της μορφής ◊Τα διαγράμματα l μηδενικών στο μηδέν έχουν τη μορφή: ◊Για κάθε μηδενικό στο μηδέν η κλίση στο διάγραμμα μέτρου αυξάνεται κατά 20db/δεκάδα (δεκαπλασιασμός συχνότητας). ◊Για κάθε μηδενικό στο μηδέν η φάση αυξάνεται κατά 90 ο.  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

24 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Διάγραμμα Bode συναρτήσεων της μορφής ◊Το διάγραμμα ενός πόλου στη συχνότητα p έχει τη μορφή: ◊Για το διάγραμμα πλάτους έχουμε δύο ασύμπτωτες ευθείες στα 0 db με κλίση 0 και με κλίση -20 db οι οποίες τέμνονται στη συχνότητα ω=p.  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

25 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Διάγραμμα Bode συναρτήσεων της μορφής ◊Το διάγραμμα ενός μηδενικού στη συχνότητα z έχει τη μορφή: ◊Για το διάγραμμα πλάτους έχουμε δύο ασύμπτωτες ευθείες στα 0 db με κλίση 0 και με κλίση 20 db οι οποίες τέμνονται στη συχνότητα ω=z.  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

26 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Διάγραμμα Bode συναρτήσεων της μορφής ◊Το διάγραμμα συζυγών πόλων στη συχνότητα έχει τη μορφή: ◊Για το διάγραμμα πλάτους έχουμε δύο ασύμπτωτες ευθείες στα 0 db με κλίση 0 και με κλίση -40 db οι οποίες τέμνονται στη συχνότητα ω=ω n. Ανάλογα με την τιμή του ζ είναι και η τελική μορφή του διαγράμματος  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

27 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Διάγραμμα Bode συναρτήσεων της μορφής ◊Το διάγραμμα συζυγών μηδενικών στη συχνότητα έχει τη μορφή: ◊Για το διάγραμμα πλάτους έχουμε δύο ασύμπτωτες ευθείες στα 0 db με κλίση 0 και με κλίση 40 db οι οποίες τέμνονται στη συχνότητα ω=ω n. Ανάλογα με την τιμή του ζ είναι και η τελική μορφή του διαγράμματος  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

28 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis ◊Για το κλειστό Σ.Α.Ε του σχήματος: ◊Να υπολογίσετε τη συνάρτηση μεταφοράς, ◊Να κατασκευάσετε το διάγραμμα Bode ◊Aπ. ◊Η αρμονική απόκριση θα είναι: Παράδειγμα Ι  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

29 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis ◊Παρατηρούμε ότι έχουμε κέρδος Κ B =1, ένα μηδενικό στο μηδέν και συζυγείς πόλους με ω n =√2=1.41, ζ=√2/2=0.707 ◊Το πλάτος Μ(ω) σε μορφή Bode (λογαριθμική κλίμακα δίνεται από τη σχέση) ◊Η φάση Φ(ω) δίνεται από τη σχέση: ◊Οπότε τα διαγράμματα Bode θα είναι: Παράδειγμα Ι (συν.)  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

30 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Παράδειγμα Ι: Επιμέρους διαγράμματα Bode  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

31 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Παράδειγμα Ι: Τελικό διάγραμμα Bode  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

32 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Περιθώριο Κέρδους και Φάσης ◊Η γενικότερη δομή ενός κλειστού συστήματος φαίνεται στο επόμενό σχήμα ◊Η ύπαρξη του ρυθμιστή R(s) είναι πολλές φορές απαραίτητη για τη ρύθμιση της συμπεριφοράς του συστήματος στη μόνιμη κατάσταση (για παράδειγμα το R(s) μπορεί να είναι απλά ένας ενισχυτής για τη ρύθμιση του κέρδους) ◊Τα χαρακτηριστικά περιθώριο κέρδους και περιθώριο φάσης της αρμονικής απόκρισης της συνάρτησης μεταφοράς βρόχου μας δίνουν πληροφορίες σχετικά με την σχετική ευστάθεια του κλειστού συστήματος. ◊Περιθώριο κέρδους G m (Gain Margin), είναι το πλάτος |Η(ω)| της απόκρισης συχνότητας όταν η φάση Α(ω) είναι ίση με -180 ο (-π) ◊Περιθώριο φάσης Φ PM (Phase Margin), είναι 180 ο συν τη φάση της απόκρισης συχνότητας στη συχνότητα ω 1 όπου το πλάτος |Η(ω)| γίνεται για πρώτη φορά ίσο με τη μονάδα (|Η(ω 1 )|=1)  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

33 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Περιθώριο Κέρδους και Φάσης (ΙΙ) ◊Στα διαγράμματα Bode τα περιθώρια φάσης και κέρδους (της συνάρτησης μεταφοράς βρόχου R(s)G(s)F(s)) ορίζονται ως: ◊Περιθώριο κέρδους G m (Gain Margin), είναι ο αριθμός των db που το πλάτος P(ω) (λογαριθμική κλίμακα) είναι κάτω από τα 0 db όταν η φάση Α(ω) είναι ίση με -180 ο (-π) ◊Περιθώριο φάσης Φ PM (Phase Margin), είναι ο αριθμός των μοιρών που η φάση της απόκρισης συχνότητας στη συχνότητα ω 1 (όπου το πλάτος M(ω)=20log 10 |Η(ω)| γίνεται για τελευταία φορά ίσο με 0 db (M(ω)=0)) είναι πάνω από τις -180 ο. ◊Θετικές τιμές για τα περιθώρια φάσης και κέρδους δηλώνουν ευσταθές κλειστό σύστημα. Όσο μεγαλύτερα (θετικά) είναι τα περιθώρια τόσο πιο ευσταθές είναι το κλειστό σύστημα  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

34 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis ◊Για το κλειστό Σ.Α.Ε του σχήματος να υπολογίσετε τα περιθώρια κέρδους και φάσης για K=2.5x10 6. ◊ΑΠ. ◊Η συνάρτηση βρόχου είναι ◊Η αρμονική απόκριση δίνεται από τη σχέση: Παράδειγμα Ι  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

35 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis ◊Παρατηρούμε ότι έχουμε κέρδος Κ B =5, και ένα τριπλό πόλο στη συχνότητα ω=1000 rad/sec ◊Το πλάτος Μ(ω) σε μορφή Bode (λογαριθμική κλίμακα δίνεται από τη σχέση) ◊Η φάση Φ(ω) δίνεται από τη σχέση: ◊Οπότε τα διαγράμματα Bode θα είναι: Παράδειγμα Ι (συν.)  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

36 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Παράδειγμα Ι (συν): Περιθώριο φάσης  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης ◊Η συχνότητα ω 1 στην οποία το πλάτος της συνάρτησης βρόχου γίνεται για τελευταία φορά ίσο με 1 είναι ω 1 =1380 rad/sec. ◊Η φάση στη συχνότητα ω 1 =1380, είναι Φ(ω 1 )=-162 ο ◊Άρα το περιθώριο φάσης είναι Φ PM =Φ(ω 1 )-(-180 ο ) =Φ(ω 1 )+180 ο = 18 ο

37 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Παράδειγμα Ι (συν): Περιθώριο κέρδους  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης ◊Η συχνότητα ω p στην οποία το η φάση της συνάρτησης βρόχου γίνεται ίση με 180 ο είναι ω p =1740 rad/sec. ◊To πλάτος στη συχνότητα ω p =1380, είναι M(ω P )=-4.32db ◊Άρα το περιθώριο κέρδους είναι G M =0-M(ω P )= 4.32db

38 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis ◊Για το κλειστό Σ.Α.Ε του σχήματος να υπολογίσετε το διάστημα διακύμανσης του Κ για το οποίο το κλειστό σύστημα είναι ευσταθές. Παράδειγμα ΙI  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης

39 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Παράδειγμα ΙI (συν)  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης ◊Με βάση το προηγούμενο παράδειγμα το πλάτος Bode δίνεται από τη σχέση: ◊όπου ◊Στο διάγραμμα απεικονίζεται το πλάτος και η φάση Bode του όρου

40 ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Παράδειγμα ΙI (συν)  Εισαγωγή  Αρμονική Απόκριση Συστημάτων  Συσχέτιση Αρμονικής και Χρονικής Απόκρισης  Διαγράμματα Bode  Κατασκευή Διαγραμμάτων Bode  Περιθώριο Κέρδους και Φάσης ◊Για τον όρο : ◊το περιθώριο κέρδους είναι περίπου 18.2 db. Επομένως για να είναι το σύστημα ασταθές πρέπει ο όρος ◊να εισάγει κέρδος μεγαλύτερο από 18.2 db. Άρα: ◊από το οποίο προκύπτει ότι για Κ>4*10^6 το περιθώριο κέρδους γίνεται αρνητικό και επομένως το σύστημα ασταθές. ◊Εργαζόμενοι με αντίστοιχο τρόπο για το περιθώριο φάσης βρίσκουμε ότι για Κ<- 0.5*10^6 το σύστημα γίνεται ασταθές


Κατέβασμα ppt "ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Ανάλυση Συστημάτων Αυτομάτου Ελέγχου: Αρμονική Απόκριση & Διαγράμματα Bode ΚΕΣ 01 – Αυτόματος Έλεγχος."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google