Ασυμπτωτικός Συμβολισμός

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Πιθανοκρατικοί Αλγόριθμοι
Advertisements

ΣΤΟΙΧΕΙΑ ΨΕΥΔΟΚΩΔΙΚΑ ΒΑΣΙΚΕΣ ΔΟΜΕΣ ΒΑΣΙΚΟΙ ΑΛΓΟΡΙΘΜΟΙ ΠΙΝΑΚΩΝ
Ανακτηση Πληροφοριασ σε νεφη Υπολογιστων
Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA.
Πολυπλοκότητα Παράμετροι της αποδοτικότητας ενός αλγόριθμου:
ΜΑΘ-3122/106 Προγραμματισμός
Διάλεξη 16: Πρόβλημα Συμφωνίας ΕΠΛ 432: Κατανεμημένοι Αλγόριθμοι.
Διακριτά Μαθηματικά ΙI Ανάλυση Αλγορίθμων
Αλγόριθμοι Ι Κάθε καλώς ορισμένη υπολογιστική διαδικασία, η οποία καλείται να επιλύσει ένα συγκεκριμένο πρόβλημα εντός πεπερασμένου χρόνου. Αλγόριθμος.
Σχεδίαση Αλγορίθμων Προτεινόμενα βιβλία:
Εισαγωγικές Έννοιες Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Επιλογή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο.
Διαίρει-και-Βασίλευε
Δυναμικός Προγραμματισμός
Προσεγγιστικοί Αλγόριθμοι
ΗΥ 150 – ΠρογραμματισμόςΞενοφών Ζαμ π ούλης ΗΥ-150 Προγραμματισμός Αλγόριθμοι και Προγράμματα.
Αλγόριθμοι και Πολυπλοκότητα
Γράφοι: Προβλήματα και Αλγόριθμοι
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 2: ΘΕΜΑΤΑ ΘΕΩΡΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Η/Υ
Προσεγγιστικοί Αλγόριθμοι για NP-Δύσκολα Προβλήματα
ΘΕΩΡΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ 7.4 – 7.6 NP ΠΛΗΡΟΤΗΤΑ.
Ουρά Προτεραιότητας: Heap
Συντομότερες Διαδρομές
Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης
2-1 Ανάλυση Αλγορίθμων Αλγόριθμος Πεπερασμένο σύνολο εντολών που, όταν εκτελεστούν, επιτυγχάνουν κάποιο επιθυμητό αποτέλεσμα –Δεδομένα εισόδου και εξόδου.
Probabilistically Checkable Proofs Theorem (PCP THEOREM) Ομιλητής Ασημακόπουλος (Ευ)Άγγελος.
ΘΕΩΡΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ 7.4 – 7.6 NP ΠΛΗΡΟΤΗΤΑ.
Μηχανές Turing και Υπολογισιμότητα
Διδακτική της Πληροφορικής ΗΥ302 Εργασία :Παρουσίαση σχολικού βιβλίου Γ’ Λυκείου Τεχνολογικής Κατεύθυνσης «Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον»
Ελάχιστο Συνδετικό Δέντρο
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 4: Συνδεσμικότητα Data Engineering Lab 1.
ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 2: ΘΕΜΑΤΑ ΘΕΩΡΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ Η/Υ
Υπολογιστική Πολυπλοκότητα Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό.
Λεξικό, Union – Find Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Αναζήτηση Κατά Βάθος Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Quicksort Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο.
Χρονική Πολυπλοκότητα και Μοντέλα
Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - 4ο εξάμηνο1 Ανάλυση Αλγορίθμων b Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα b Προσεγγίσεις:
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Υπολογισμού Κλάσεις P και NP.
 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον:  Τεχνικές Διδασκαλίας.
Δομές Δεδομένων 1 Θέματα Απόδοσης. Δομές Δεδομένων 2 Οργανώνοντας τα Δεδομένα  Η επιλογή της δομής δεδομένων και του αλγορίθμου επηρεάζουν το χρόνο εκτέλεσης.
ΚΕΦΑΛΑΙΟ Τι είναι αλγόριθμος
Χρονική Πολυπλοκότητα
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκοντες:Στάθης Ζάχος Νίκος Παπασπύρου
Συνδεσμικότητα ΘΕΩΡΙΑ ΓΡΑΦΩΝ Εργαστήριο Τεχνολογίας & Επεξεργασίας Δεδομένων Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Κεφάλαιο 4: Συνδεσμικότητα.
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ - 4ο εξάμηνο1 Ανάλυση Αλγορίθμων b Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα.
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διδάσκοντες:Στάθης Ζάχος Νίκος Παπασπύρου
Εισαγωγή στην Έννοια του Αλγορίθμου και στον Προγραμματισμό
Πρόγραμμα Προπτυχιακών Σπουδών Ροή Λ: Λογισμικό Κώστας Κοντογιάννης Αναπλ. Καθηγητής Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Ε.Μ.Π.
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ Αντικειμενοστραφής προγραμματισμός Web Site: ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ.
Ανταγωνιστική Ανάθεση Πόρων και Παίγνια Συμφόρησης Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο.
ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ. Δυαδική αναζήτηση (Binary search) ΔΕΔΟΜΕΝΟ: ένα μεγάλο αρχείο που περιέχει τιμές z [0,1,…,n-1] ταξινομημένες.
ΑΛΓΟΡΙΘΜΟΣ ΠΡΟΒΛΗΜΑ ΑΛΓΟΡΙΘΜΟΣ ΛΥΣΗ
5η Διάλεξη Λίστες και αρχές ανάλυσης αλγορίθμων Ε. Μαρκάκης
Πρόγραμμα Προπτυχιακών Σπουδών Ροή Λ: Λογισμικό
Διδάσκων: Δρ. Τσίντζα Παναγιώτα
Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο
ΚΕΦΑΛΑΙΟ 1 Ανάλυση προβλήματος.
ΤΜΗΜΑ Μηχανικών Παραγωγής & Διοίκησης
ΑΛΓΟΡΙΘΜΟΣ.
ENOTHTA 2. ΘΕΜΑΤΑ ΘΕΩΡΗΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΑΕΠΠ
ΑΣΥΜΠΤΩΤΙΚΗ ΑΝΑΛΥΣΗ & ΠΡΟΣΘΕΣΗ
ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ ΓΙΑ ΣΥΣΤΗΜΑΤΑ ΜΕΤΑΔΟΣΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
ΠΛΗΡΟΦΟΡΙΚΗ Γ΄ Γυμνασίου Α΄ Τρίμηνο
Στοιχεία Χωρικής Πολυπλοκότητας
ΤΜΗΜΑ Μηχανικών Παραγωγής & Διοίκησης
Μεταγράφημα παρουσίασης:

Ασυμπτωτικός Συμβολισμός Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Υπολογιστική Πολυπλοκότητα Υπολογιστική πολυπλοκότητα αλγόριθμου Α: Ποσότητα υπολογιστικών πόρων που απαιτεί Α ως αύξουσα συνάρτηση μεγέθους στιγμιότυπου εισόδου. Χρόνος, μνήμη, επεξεργαστές, επικοινωνία, τυχαιότητα. Χειρότερης, μέσης, καλύτερης περίπτωσης. Μέγεθος στιγμιότυπου εισόδου n : #bits για αναπαράσταση δεδομένων εισόδου στη μνήμη. Πλήθος βασικών συνιστωσών που αποτελούν μέτρο μεγέθους και δυσκολίας στιγμιότυπου (π.χ. κορυφές & ακμές γράφου). Υπολογιστική πολυπλοκότητα προβλήματος Π: Πολυπλοκότητα (χειρότερης περίπτωσης) καλύτερου αλγόριθμου που λύνει πρόβλημα Π. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011) Ασυμπτωτικός Συμβολισμός

Ανάλυση Αλγορίθμου Απόδειξη ορθότητας Μερικές φορές για ένα καλώς ορισμένο υποσύνολο των στιγμιοτύπων εισόδου. Εκτίμηση υπολογιστικής πολυπλοκότητας. Χειρότερης, μέσης, και καλύτερης περίπτωσης. Καταλληλότερη λύση ανάλογα με απαιτήσεις εφαρμογής. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011) Ασυμπτωτικός Συμβολισμός

Ασυμπτωτική Εκτίμηση Χρόνος εκτέλεσης αλγόριθμου Α: Αύξουσα συνάρτηση του Τ(n) που εκφράζει σε πόσο χρόνο ολοκληρώνεται ο Α όταν εφαρμόζεται σε στιγμ. μεγέθους n. Ενδιαφέρει η τάξη μεγέθους T(n) και όχι ακριβής εκτίμηση Τ(n). Ακριβής εκτίμηση είναι συχνά δύσκολη και εξαρτάται από υπολογιστικό περιβάλλον, υλοποίηση, ... Τάξη μεγέθους είναι εγγενής ιδιότητα του αλγόριθμου. Δυαδική αναζήτηση έχει λογαριθμικό χρόνο. Γραμμική αναζήτηση έχει γραμμικό χρόνο. Ασυμπτωτική εκτίμηση αγνοεί σταθερές και εστιάζει σε τάξη μεγέθους χρόνου εκτέλεσης. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011) Ασυμπτωτικός Συμβολισμός

Ασυμπτωτικός Συμβολισμός ... εκφράζει τα αποτελέσματα ασυμπτωτικής εκτίμησης. Θ( ) δηλώνει την ακριβή εκτίμηση τάξης μεγέθους. Θ(g(n)) σύνολο συναρτήσεων ίδιας τάξης μεγέθους με g(n). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011)

Ασυμπτωτικός Συμβολισμός Ο O( ) δηλώνει άνω φράγμα στην τάξη μεγέθους. Ο(g(n)) σύνολο συναρτήσεων με τάξη μεγέθους που δεν υπερβαίνει τάξη μεγέθους g(n). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011)

Ασυμπτωτικός Συμβολισμός ο ο( ) δηλώνει άνω φράγμα στην τάξη μεγέθους που δεν είναι ακριβές. ο(g(n)) σύνολο συναρτήσεων με τάξη μεγέθους που υπολείπεται τάξης μεγέθους g(n). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011)

Ασυμπτωτικός Συμβολισμός Ω Ω( ) δηλώνει κάτω φράγμα στην τάξη μεγέθους. Ω(g(n)) σύνολο συναρτήσεων με τάξη μεγέθους που δεν υπολείπεται τάξης μεγέθους g(n). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011)

Ασυμπτωτικός Συμβολισμός ω ω( ) δηλώνει κάτω φράγμα στην τάξη μεγέθους που δεν είναι ακριβές. ω(g(n)) σύνολο συναρτήσεων με τάξη μεγέθους που υπερβαίνει τάξης μεγέθους g(n). Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011)

Ασυμπτωτικός Συμβολισμός f(n) = Θ(g(n)) ~ ασυμπτωτικά f(n) = g(n) f(n) = O(g(n)) ~ ασυμπτωτικά f(n) ≤ g(n) f(n) = o(g(n)) ~ ασυμπτωτικά f(n) < g(n) f(n) = Ω(g(n)) ~ ασυμπτωτικά f(n) ≥ g(n) f(n) = ω(g(n)) ~ ασυμπτωτικά f(n) > g(n) Κάποιες απλές σχέσεις: O(g(n)) = o(g(n))  Θ(g(n)) Ω(g(n)) = ω(g(n))  Θ(g(n)) Θ(g(n)) = O(g(n))  Ω(g(n)) ο(g(n))  ω(g(n)) =  Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011)

Ασυμπτωτικός Συμβολισμός Πολυώνυμο βαθμού d: Κάποια αθροίσματα: Επίσης: Ιεράρχηση: Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011) Ασυμπτωτικός Συμβολισμός

Κάποιες Ασκήσεις Ποιες από τις παρακάτω προτάσεις είναι αληθείς; 10 f(n) + 10100 = O(f(n)) f(n) + g(n) = Θ(min{f(n), g(n)}) f(n) + g(n) = Ω(min{f(n), g(n)}) f(n) + g(n) = Ο(max{f(n), g(n)}) Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011) Ασυμπτωτικός Συμβολισμός

Κάποιες Ασκήσεις Να συμπληρωθεί ο πίνακας: Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011) Ασυμπτωτικός Συμβολισμός

Κάποιες Ασκήσεις Να βάλετε συναρτήσεις σε αύξουσα σειρά τάξης μεγέθους: Απάντηση: Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011) Ασυμπτωτικός Συμβολισμός

Κάποιες Ασκήσεις Σχεδιάσετε διάγραμμα Venn για τις κλάσεις συναρτήσεων: Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011) Ασυμπτωτικός Συμβολισμός

Πρακτικά Αποδοτικοί Αλγόριθμοι ... έχουν πολυωνυμική (χρονική) πολυπλοκότητα. Π.χ. log n, n, n log n, n2, n3, ... Χρόνοι nd, όπου d μεγάλο, σπάνιοι και βελτιώνονται. Εκθετική πολυπλοκότητα απαγορευτική για μεγάλα στιγμιότυπα! Π.χ. Αύξηση μεγεθών που λύνουμε σε συγκεκριμένο χρόνο όταν 10πλασιάζεται η ταχύτητα υπολογιστή:

Αποδοτική Επίλυση: Κλάση P Αλγόριθμος πολυωνυμικού χρόνου λύνει κάθε στιγμιότυπο σε χρόνο O(nd), d σταθερά. Κλάση P : προβλήματα απόφασης που επιλύονται από αλγόριθμους πολυωνυμικού χρόνου. Shortest paths, MST, max flow, min cut, min-cost flow, maximum matching, linear programming, … Αξίωμα Cook-Karp : κλάση ευεπίλυτων προβλημάτων ταυτίζεται με κλάση P. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011) Ασυμπτωτικός Συμβολισμός

Αποδοτική Επίλυση: Κλάση P Shortest paths, MST, max flow, min cut, min-cost flow, maximum matching, linear programming, … Θέση Cook-Karp : P ταυτίζεται με ευεπίλυτα προβλήματα. Υπέρ θέσης Cook-Karp: Συνήθως πολυώνυμα μικρού βαθμού (π.χ. n, n2, n3). Διπλασιασμός υπολογιστικής ισχύος: σημαντική αύξηση στο μέγεθος στιγμιότυπων που επιλύουμε. Κριτική στη θέση Cook-Karp: Ακραίες περιπτώσεις: θεωρείται πρακτικό το n100 αλλά όχι το 2n/100 ! Γραμμικός Προγραμματισμός: Simplex vs. Ellipsoid. Αλγόριθμοι & Πολυπλοκότητα (Χειμώνας 2011) Ασυμπτωτικός Συμβολισμός