Στατιστική I Χειμερινό Γ. Παπαγεωργίου

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Περιγραφική Στατιστική
Advertisements

ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΛΥΣΗ ΔΕΔΟΜΕΝΩΝ
Ιούλιος Έρευνα Καταναλωτικής Εμπιστοσύνης Ιούλιος 2012.
Ανάλυση Πολλαπλής Παλινδρόμησης
Μοντέλα μέτρησης απόδοσης συστήματος (KLM) και εισαγωγή στη στατιστική
Μετρήσεις Κεντρικής Τάσης
EDUC 612 Ανωτερες μορφες στατιστικης αναλυσησ
Εβδομάδα 3 Παρουσίαση Δεδομένων
Στατιστική Ι Παράδοση 5 Οι Δείκτες Διασποράς Διασπορά ή σκεδασμός.
Στατιστική Ι Παράδοση 6 Η Κανονική Κατανομή
Εισαγωγή στην Κοινωνιογλωσσολογία
Σχέση Απόδοσης- Κινδύνου στα Πλαίσια της Θεωρίας Χαρτοφυλακίου
Επιδημιολογικά Στοιχεία:
ΚΕΦΑΛΑΙΟ 3 Περιγραφική Στατιστική
Είδη δειγμάτων Τυχαίο/ μη τυχαίο
Βασικές Αρχές Μέτρησης
Στατιστική I Γ. Παπαγεωργίου XEIM Επιλογή μεθόδου Εξαρτάται από τον ερευνητή/τρια Ποιοτικά/ ποσοτικά όταν τα data αριθμοποιούνται. εδώ – Έμφαση.
ΚΕΦΑΛΑΙΟ 6 ΓΕΩΓΡΑΦΙΚΕΣ ΜΕΘΟΔΟΙ ΚΑΙ ΤΕΧΝΙΚΕΣ: ΣΗΜΕΙΑ
Ανάλυση Ποσοτικών Δεδομένων Στατιστική
Πηγή: Βιοστατιστική [Β.Γ. Σταυρινός, Δ.Β. Παναγιωτάκος]
ΣΤΑΤΙΣΤΙΚΗ Η επιστήμη που ασχολείται με την συλλογή δεδομένων,ανάλυση και ερμηνεία αυτών Η επιστήμη με τη χρήση της οποίας λαμβάνουμε αποφάσεις κάτω από.
Εισαγωγή Στατιστική είναι η επιστήμη που με τη βοήθεια επιστημινκών μεθόδων ασχολείται με τη συλλογή, οργάνωση, παρουσίαση και ανάλυση αριθμητικών στοιχείων.
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ
Κεφάλαιο 13 Ανάλυση ποσοτικών δεδομένων
Τι είναι η Κατανομή (Distribution)
Διάλεξη  Μέτρηση: Είναι μια διαδικασία κατά την οποία προσδίδουμε αριθμητικά δεδομένα σε κάποιο αντικείμενο, σύμφωνα με κάποια προκαθορισμένα.
Το φυλλόγραμμα (stem and leaf plot) Αποτελεί ένα συνδυασμό πίνακα και ιστογράμματος. Κάθε παρατήρηση χωρίζεται Σε δύο μέρη: 1.
Στατιστική – Πειραματικός Σχεδιασμός Βασικά. Πληθυσμός – ένα μεγάλο σετ από Ν παρατηρήσεις (πιθανά δεδομένα) από το οποίο το δείγμα λαμβάνεται. Δείγμα.
Στατιστικά περιγραφικά μέτρα Παναγιώταρου Αλίκη Τμήμα Νοσηλευτικής 5η Διάλεξη.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Περιγραφική Στατιστική Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 1: Περιγραφική Στατιστική Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και.
Σχεδιασμός των Μεταφορών Ενότητα #5: Δειγματοληψία – Sampling. Δρ. Ναθαναήλ Ευτυχία Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών.
Σπύρος Αβδημιώτης MBA PhD Τμήμα Διοίκησης Επιχειρήσεων Κατεύθυνση Διοίκησης Τουριστικών Επιχειρήσεων & Επιχειρήσεων Φιλοξενίας Εαρινό Εξάμηνο 2016.
ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ Γ. Σιδερίδης. ΕΝΝΟΙΕΣ ΣΤΑΤΙΣΤΙΚΗΣ- ΜΕΘΟΔΟΛΟΓΙΑΣ Η στατιστική ως επιστήμη.....γιατί ακριβώς τη χρειαζόμαστε; Η στατιστική ως επιστήμη.....γιατί.
Δεδομένα Συχνότητα-Μέτρα Θέσης Μέτρα Διασποράς. Δεδομένα ΠοσοτικάΣυνεχή Διακριτά Ποιοτικά Δεδομένα ΠρωτογενήΔευτερογενή.
Δραματική Τέχνη στην εκπαίδευση: Ερευνητικό Σχέδιο Ι Στις ανθρωπιστικές επιστήμες επικράτησαν δύο ερευνητικές κατευθύνσεις: Η στατιστική ανάλυση (συνυπολογίζει.
ΒΑΣΙΚΕΣ ΓΝΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ για επεξεργασία δεδομένων έρευνας Εμμανουήλ Κακάρογλου Σχολικός Σύμβουλος ΠΕ12.
ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΠΙΝΑΚΕΣ ΚΑΙ ΔΙΑΓΡΑΜΜΑΤΑ Πηγή: Βιοστατιστική [Σταυρινός / Παναγιωτάκος] Βιοστατιστική [Τριχόπουλος / Τζώνου / Κατσουγιάννη]
ΔΙΑΛΕΞΗ 11η Ποσοτική έρευνα υγείας
Στατιστική Στατιστική είναι η συλλογή, οργάνωση, ανάλυση,
30 Νοεμβρίου 2015 Γιώργος Ιωσηφίδης Δ/ντης Λυκείου Λινόπετρας.
ΣΤΑΤΙΣΤΙΚΑ ΜΕΤΡΑ ΔΙΑΣΠΟΡΑΣ - ΑΣΥΜΜΕΤΡΙΑΣ - ΚΥΡΤΩΣΕΩΣ
Επικρατούσα τιμή. Σε περιπτώσεις, που διαφορετικές τιμές μιας μεταβλητής επαναλαμβάνονται περισσότερο από μια φορά, η επικρατούσα τιμή είναι η συχνότερη.
Ανάλυση- Επεξεργασία των Δεδομένων
Μέτρα Διασποράς Η μεταβλητότητα, ή αλλιώς η ποικιλομορφία, στις τιμές μιας μεταβλητής θα πρέπει πάντοτε να λαμβάνεται υπόψη σε οποιαδήποτε στατιστική ανάλυση!
Στατιστικές Υποθέσεις
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική
Τι μπορούμε να δούμε σε αυτό το ιστόγραμμα?
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Μέτρα μεταβλητότητας ή διασποράς
Επαγωγική Στατιστική Εκτίμηση και Έλεγχος μέσων τιμών Χαράλαμπος Γναρδέλλης Τμήμα Τεχνολογίας Αλιείας και Υδατοκαλλιεργειών.
Χαρακτηριστικά μιας Κατανομής
Ερμηνεία Σχετικού λόγου ( Odds ratio ) -1
Διαλέξεις στη Βιοστατιστική
Πού χρησιμοποιείται ο συντελεστής συσχέτισης (r) pearson
Άσκηση 2-Περιγραφικής Στατιστικής
Η ανάγκη χρήσης μεταβλητών
Εισαγωγή στην Στατιστική
Ομαδοποιημένη Κατανομή Συχνοτήτων
Ποσοτικές μέθοδοι περιγραφής δεδομένων
ΣΤΑΤΙΣΤΙΚΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Επαγωγική Στατιστική Συσχέτιση – Συντελεστής συσχέτισης Χαράλαμπος Γναρδέλλης Τμήμα Τεχνολογίας Αλιείας και Υδατοκαλλιεργειών.
Στατιστικές Υποθέσεις
Στατιστικά Περιγραφικά Μέτρα
Παναγιώταρου Αλίκη Τμήμα Νοσηλευτικής
Βαςικα Στατιςτικα Μετρα
Μεθοδολογία Έρευνας Διάλεξη 9η: Ανάλυση Ποσοτικών Δεδομένων
Βιοστατιστική (Θ) ΤΕΙ Αθήνας Ενότητα 3: Περιγραφική στατιστική
Επαγωγική Στατιστική Συσχέτιση – Συντελεστές συσχέτισης Χαράλαμπος Γναρδέλλης Εφαρμογές Πληροφορικής στην Αλιεία και τις Υδατοκαλλιέργειες.
Ανάλυση διακύμανσης Τι είναι η ανάλυση διακύμανσης
Μεταγράφημα παρουσίασης:

Στατιστική I Χειμερινό 2014-2015 Γ. Παπαγεωργίου

Επιλογή μεθόδου Εξαρτάται από τον ερευνητή/τρια Ποιοτικά/ ποσοτικά όταν τα data αριθμοποιούνται. Έμφαση – στην ερμηνεία των αποτελεσμάτων από το computer Σημαντικά – κατάταξη και συντονισμός στοιχείων

Ποσοτικοποίηση δεδομένων (Ι) Ποσοτική ανάλυση – Η αριθμητική αναπαράσταση και διαχείριση παρατηρήσεων που σκοπό έχει την περιγραφή και την ερμηνεία των φαινομένων που αντικατοπτρίζουν αυτές οι παρατηρήσεις

Ηλικία Φύλο 1 = 1 2 = 2 3 = 3 4 = 4 5 = 5Ποσοτικοποίηση δεδομένων (Ι) Άνδρας = 1 Γυναίκα = 2

Πολιτικός προσανατολισμός Νέο-Δημοκράτες = 1 ΣΥΡΙΖΑ = 2 Ανεξάρτητοι = 3 Περιφέρεια Δυτική = 1 Μεσοδυτική = 2 Νότια = 3 Βορειανατολική = 4

Σχήμα 13.1 13-6

Συντομευμένο όνομα μεταβλητής ATTEND Πόσο συχνά παρακολουθείτε θρησκευτικές λειτουργίες; 0. Ποτέ 1. Λιγότερο από μία φορά το χρόνο 2. Περίπου μία ή δύο φορές το χρόνο 3. Αρκετές φορές το χρόνο 4. Περίπου μία φορά το μήνα 5. Δύο-τρεις φορές το μήνα 6. Σχεδόν κάθε βδομάδα 7. Κάθε βδομάδα 8. Πολλές φορές τη βδομάδα 9. Δεν γνωρίζω, δεν απαντώ Ορισμός μεταβλητής Αριθμητική Απόδοση Τιμές μεταβλητής 13-7

Ποσοτικοποίηση δεδομένων (VΙ) Data Entry Excel SPSS 13-8

Είδη ανάλυσης ποσοτικών δεδομένων Περιγραφική ανάλυση μονομεταβλητών– συνοπτική παρουσίαση χαρακτηριστικών ενός φαινομένου όσον αφορά την κατανομή των μεταβλητών Περιγραφική ανάλυση διμεταβλητών– περιγραφή μορφής + δύναμης σχέσης μεταξύ μεταβλητών/ + σύγκριση χαρακτηριστικών της ίδιας μεταβλητής διαφορικών πληθυσμών ή διαφορετικών μεταβλητών στον ίδιο πληθυσμό (Επε) ξηγηματική ανάλυση – κατεύθυνση και δύναμης της επιρροής μεταξύ μεταβλητών. Επαγωγική στατιστική -- αναφορά από τo δείγμα --στον πληθυσμό/ + από τον γνωστό – στο άγνωστο πληθυσμό- Γενικεύσεις

Περιγραφή κοινωνικών φαινομένων Σημαντικό – αποτύπωση των γενικών χαρακτηριστικών DATA – πρωτογενή # ομαδικά, ομάδες, οργανώσεις, κοινότητες, κράτη, κλπ. (γενική εικόνα). Βάση για ανάλυση Μεταβλητές – ιδιότητες, χαρακτηριστικά Στατιστική μέθοδος – σχετική εξαρτάται από το χαρακτηριστικά (επίπεδα μέτρησης). SPSS- πακέτα/ τμήματα (modules)

Μονομεταβλητή ανάλυση (Ι) Μονομεταβλητή ανάλυση – Η ανάλυση μιας μοναδικής μεταβλητής, για λόγους περιγραφής (παραδείγματα: κατανομές συχνοτήτων, μέσοι, μέτρα διασποράς) Παράδειγμα: φύλο Ο αριθμός των ανδρών και των γυναικών σε ένα δείγμα ή πληθυσμό 13-11

Μονομεταβλητή ανάλυση (ΙΙ) Κατανομές Κατανομή συχνοτήτων – Μια περιγραφή του αριθμού των φορών ή των ποσοστών που παρατηρούνται οι διάφορες τιμές μιας μεταβλητής σε ένα δείγμα 13-12

Σχήμα 13.3 13-13

Σχήμα 13.4 13-14

Μονομεταβλητή ανάλυση (ΙΙΙ) Κεντρική τάση Μέσος – Ένας όρος που συνήθως υπονοεί κάτι τυπικό ή κανονικό, μια κεντρική τάση (παραδείγματα: μέσος, διάμεσος, κορυφή) 13-15

Μονομεταβλητή ανάλυση (ΙV) Μέσος όρος – Ένας μέσος που υπολογίζεται αθροίζοντας τις τιμές διάφορων παρατηρήσεων και διαιρώντας τες με τον σύνολο των παρατηρήσεων Επικρατούσα τιμή / Κορυφή – Ένας μέσος που αναπαριστά την πιο συχνά παρατηρημένη τιμή ή ιδιότητα Διάμεσος – Ένας μέσος που αντιπροσωπεύει την τιμή της «μεσαίας» παρατήρησης σε ένα ταξινομημένο σύνολο παρατηρήσεων 13-16

Συνοπτική περιγραφή μεταβλητών μιας κατανομής Διαγράμματα (βλ. σχεδιάγραμμα) Συχνότητες (βλ. πίνακα) ΑΜΟ, (arithmetic mean), X, μ., Ẍ= Σ Ẍ i/N Διάμεσος (median), ιεραρχικά (όχι ονομαστικές μεταβλ. Επικρατούσα τιμή (mode) ονομαστικό επ. ταξινόμηση Ν= Ν+1/2 (μέση θέση όχι μέση τιμή). Εύρος= απόσταση μεταξύ 2 ακραίων τιμών

Διαφορετικές μορφές κατανομών Θετικές κατανομές Αρνητικές κατανομές Λεπτόκυρτες κατανομές Δίκορφες κατανομές Ασύμμετρες κατανομές Κανονική κατανομή κατανομή κανονική, όλα μέτρα = ίδια τιμή

κανονική κατανομή Normal and both)

δίκορφη

Αρνητική κατανομή (negative)

Θετική κατανομή (positive)

Διασπορά/ Τυπική απόκλιση Διακύμανση (range) απόσταση μεταξύ της μικρότερης και μεγαλύτερης τιμής Διασπορά σ, (variance) Τυπική απόκλιση s, (+) (standard deviation)

Μονομεταβλητή ανάλυση (VΙ) Διασπορά – Η κατανομή τιμών γύρω από μία κεντρική τιμή, όπως ένα μέσο όρο Τυπική απόκλιση – Μέτρο διασποράς από τον μέσο, το οποίο στην περίπτωση μιας κανονικής κατανομής υπολογίζεται με τέτοιο τρόπο ώστε το 68% περίπου των περιπτώσεων να κυμαίνεται μεταξύ συν/πλην μία φορά την τυπική απόκλιση από το μέσο, το 95% συν/πλην δύο φορές την τυπική απόκλιση και το 99,9% συν/πλην τρεις φορές την τυπική απόκλιση 13-25

Κανονική καμπύλη (Gauss)

Διμεταβλητή ανάλυση (Ι) Διμεταβλητή ανάλυση – Η ταυτόχρονη ανάλυση δύο μεταβλητών, προκειμένου να διαπιστωθεί η εμπειρική σχέση μεταξύ τους 13-27

Διμεταβλητή ανάλυση (ΙΙΙ) Κατασκευή και ανάγνωση διμεταβλητών πινάκων Παράδειγμα: φύλο και στάση απέναντι στην ισότητα των φύλων Οι περιπτώσεις χωρίζονται σε άνδρες και γυναίκες Κάθε υποομάδα περιγράφεται ανάλογα με το αν δέχεται ή απορρίπτει την ισότητα των φύλων Οι άνδρες και οι γυναίκες συγκρίνονται βάσει των ποσοστών υποστήριξης της ισότητας των φύλων 13-28

Σχήμα 13.7 Δημιουργία ενός πίνακα ποσοστών 13-29

Διμεταβλητή ανάλυση (ΙV) Πίνακας συνάφειας – Μια μορφή παρουσίασης των σχέσεων μεταξύ διακριτών μεταβλητών ως κατανομών ποσοστών 13-30