“ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΚΛΙΜΑ"

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ancient Greek for Everyone: A New Digital Resource for Beginning Greek Unit 4: Conjunctions 2013 edition Wilfred E. Major
Advertisements

ΙΔΡΥΜΑ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΕΥΝΑΣ ΑΡΤΕΜΗΣ ΣΑΪΤΑΚΗΣ 6η ΣΥΝΑΝΤΗΣΗ ΕΛΛΗΝΙΚΟΥ ΔΙΚΤΥΟΥ ΘΕΣΣΑΛΟΝΙΚΗ, 1 ΑΠΡΙΛΙΟΥ 2005 ΠΡΑΚΤΙΚΟΣ ΟΔΗΓΟΣ ΓΙΑ ΞΕΝΟΥΣ ΕΡΕΥΝΗΤΕΣ ΣΤΗΝ ΕΛΛΑΔΑ.
Renewable Energy Sources in Greece, within the crisis environment 4rth InnoForum, Athens Information Technology, 25 May 2012.
8 th Primary School Zografou, Athens,GREECE 8 ο Δημοτικό Σχολείο Ζωγράφου, Αθήνα COMENIUS MULTILATERAL PROJECT “The Source of Our Health” May 2014 The.
MEI 2012 Thessaloniki - HELLAS. Ιδανικό... Πραγματικό...
ENO S PRESENTATIONS BY ENOGREECE • Eno Greece s schools work in Enoprogramme 7 years. Lately they became very active because we managed to connect eno.
Η ΑΞΙΟΛΟΓΗΣΗ ΤΗΣ 24-ΩΡΗΣ ΔΙΑΚΥΜΑΝΣΗΣ ΤΗΣ ΑΡΤΗΡΙΑΚΗΣ ΠΙΕΣΗΣ ΑΝΔΡΕΑΣ ΠΙΤΤΑΡΑΣ MD.
Αναλογική- Ψηφιακή Φωτογραφία (Φιλμ-Αισθητήρας)
1 Please include the following information on this slide: Παρακαλώ, συμπεριλάβετε τις παρακάτω πληροφoρίες στη διαφάνεια: Name Balafouti MariaWhich of.
SCHOOL YEAR Ms Kefallinou. Language A: Language and Literature is directed towards developing and understanding the constructed nature of meanings.
IT2000 vs IT2012 By Fotis Lavdas & Menelaos Makrigiannis.
Βασικές Εννοιες Ενέργειας. Εισαγωγή ■ ■ Το λεξιλόγιο της Ενέργειας ■ ■ Επισκόπηση μονάδων ■ ■ Βασικές έννοιες Θερμοδυναμικής ■ ■ Σύστημα ■ ■ Κατάσταση.
Ancient Greek for Everyone: Unit 3: Greek Nouns supplement: Tips on Translating Greek into English GREK 1001 Fall 2013 M-Th 9:30-10:20 Coates 236 Wilfred.
RIO DE JANEIRO FOR : ALEXANDRA GIOVANOPOYLOY DORA GARBOYNI ZOI DALIDOY ELINA DIMITRIADOY CHRISTINA DOYMPA.
Business Process Management and Knowledge Toolkit
Some information about our place. Greece is a small country on the south of Europe. The peninsula, where Greece is located, is called Balkan.
ΠΛΑΚΑ Η παλαιότερη γειτονιά της Αθήνας διατηρεί τα ίχνη της μακραίωνης ιστορίας της.
Hellenic Ministry for the Environment, Spatial Planning and Public Works Greek Experience on the Implementation of IPPC Directive Alexandros Karavanas.
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
(ΠΡΟΣΩΠΙΚΕΣ ΑΝΤΩΝΥΜΙΕΣ)
Τεχνολογία ΛογισμικούSlide 1 Έλεγχος Καταψύκτη (Ada) Τεχνολογία ΛογισμικούSlide 39 with Pump, Temperature_dial, Sensor, Globals, Alarm; use Globals ; procedure.
Ρυθμίσεις Android phones για MMS και Internet. 20/6/2013 Although every effort has been taken, this DRAFT technical paper has been prepared in good faith.
Τι θα φέρει το Σύννεφο στη Διαχείριση Δεδομένων: Προκλήσεις και Ευκαιρίες Ελληνικό Συμπόσιο Διαχείρισης Δεδομένων 2010 Ευαγγελία Πιτουρά Τμήμα Πληροφορικής,
Πληροφοριακά Συστήματα και Βάσεις Δεδομένων
A model for Context-aware Databases. 19/04/20052 What is Context? Ο καθένας ορίζει το context διαφορετικά... “location, identities of nearby people and.
ΛΙΠΙΔΙΑ Ορισμός A group of compounds that are soluble in certain organic solvents such as Ether, Benzene, and Chloroform, and are insoluble in water.
Ελληνικό γραφείο υποστήριξης: Entwined with the teaching of English.
ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΑΝΑΠΤΥΞΙΑΚΗ ΔΥΤΙΚΗΣ ΘΕΣΣΑΛΙΑΣ Α.Ε. ENVIRONMENTAL DEVELOPMENT AGENCY OF WESTERN THESSALY S.A. Best practices of successful local-regional.
Lesson 14: Around the city JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Κ. Καρτάλης Πανεπιστήμιο Αθηνών
Lesson 24a: Travel III JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Emission Inventory in Cyprus
Lesson 18b: At the University JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Lesson 21b: Nature II JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Lesson 20a: Nature I JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Lesson 18c: At the University JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Lesson 32a: Trasportation JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Η Συμμετοχή των Μεταναστών στη Δημόσια Ζωή: Εμπειρίες από την Ελλάδα και την Ευρώπη Immigrant Participation in Public Life: European & Greek experiences.
OUR CITY ATHENS GODS IN THE MYTH ATHENA ( Latin- Minerva ): The goddess of wisdom and strategy! She helped many heroes in mythology in her own way. Athena.
1 Please include the following information on this slide: Παρακαλώ, συμπεριλάβετε τις παρακάτω πληροφoρίες στη διαφάνεια: Name Giannakodimou Aliki Kourkouta.
Developing Human Values Through the Cross-curricular Approach.
6 Η ΠΑΡΟΥΣΙΑΣΗ: ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΑΣ, ΜΕΣΩΝ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΦΗΜΙΣΗ.
Προσομοίωση Δικτύων 2n Άσκηση Δημιουργία, διαμόρφωση μελέτη επικοινωνιακών ζεύξεων.
ΕΥΡΩΠΑΪΚΑ ΣΧΟΛΕΙΑ. SCHOOLS OF EUROPEAN EDUCATION.
1 Αποτελέσματα κλάδου – ‘Α τρίμηνο 2015 Το α’ τρίμηνο του 2015 ο κλάδος παρουσιάζει τάσεις σταθεροποίησης στα έσοδα του ενώ οι επενδύσεις αυξάνονται με.
Μαθαίνω με “υπότιτλους”
Παπαϊωάννου Άλκηστις Ph. D. , M. Sc
Ἱερὰ Μονὴ Σταυρονικήτα Βρίσκεται στὴν ἀνατολικὴ ἀκτὴ τοῦ Ἁγίου Ὅρους σὲ ὑψόμετρο 50μ. ἀπὸ τὴν ἐπιφάνεια τῆς θάλασσας. Εἶναι ἡ τελευταία ἀπὸ τὶς μονὲς.
2 Θεςη και διαταξη 11/9/2018 6:52 πμ ΔΡ. ΧΡΥΣΟΥΛΑ ΠΑΠΑΪΩΑΝΝΟΥ
Aρχιτεκτονική άμεσων ενισχύσεων
Ανάλυση Γεωργικού Οικογενειακού Εισήματος (ΓΟΕ)
ΤΙ ΕΙΝΑΙ ΤΑ ΜΟΆΙ;.
Financial Market Theory
Find: Force on culvert in [lb/ft]
On the Association Between Genes and Complex Traits
Overexpression of HORMAD1 induces the SAiCNA scar, chromosome instability, and changes in HR and NHEJ activity. Overexpression of HORMAD1 induces the SAiCNA.
Beat up Motion Bumping.
Decreasing Wnt signaling leads to changes in metabolic patterning in xenograft tumors Decreasing Wnt signaling leads to changes in metabolic patterning.
The influence of arachidonic acid metabolites on leukocyte activation and skeletal muscle injury after ischemia and reperfusion  Robert A. Cambria, MD,
Objectives and structure of the workshop
Entropy & 2nd Law of Thermodynamics
Production of Supra-regular Spatial Sequences by Macaque Monkeys
Cipher Feedback Mode Network Security.
Fig. 6 Piezoelectric e-skin with fingerprint-like patterns for texture perception. Piezoelectric e-skin with fingerprint-like patterns for texture perception.
Experimental and recording session time line.
Fig. 4 Response of nitrifying communities to AgNP exposure.
Simulated self-motion alters perceived time to collision
Time course of visual responsiveness induced by BIC ejection into the SC in dopamine-intact and AMPT-treated animals. Time course of visual responsiveness.
GENESIS Dig Site 5 Red Level Questions.
Mitral annular size and shape in sheep with annuloplasty rings
Μεταγράφημα παρουσίασης:

“ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΚΛΙΜΑ" Χρήστος Ζερεφός, Ακαδημαϊκός Πρόεδρος της Διεθνούς Επιτροπής Όζοντος

«ΟΥΚ ΑΙΕΙ Δ’ ΟΙ ΑΥΤΟΙ ΤΟΠΟΙ ΤΗΣ ΓΗΣ ΕΝΥΓΡΟΙ ΕΙΝΑΙ ΟΥΤΕ ΞΗΡΟΙ ΑΛΛΑ ΜΕΤΑΒΑΛΛΟΥΣΙΝ … ΚΑΤΑ ΜΕΝΤΟΙ ΤΙΝΑ ΤΑΞΙΝ ΝΟΜΙΖΕΙΝ ΧΡΗ ΤΑΥΤΑ ΓΙΓΝΕΣΘΑΙ ΚΑΙ ΠΕΡΙΟΔΟΝ …» ΑΡΙΣΤΟΤΕΛΟΥΣ ΜΕΤΕΩΡΟΛΟΓΙΚΑ Βιβλίον Ι Κεφ 14 Από τη «Σχολή των Αθηνών» του Ραφαήλ, ο Πλάτων και ο Αριστοτέλης

Χωρίς θερμοκηπικά αέρια η μέση θερμοκρασία της Γης θα ήταν περίπου -19οC, ενώ σήμερα είναι +14.5οC ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ 2008 - ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ 2008 - ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

CO2 εγκλωβισμένο στους Παγετώνες 2100 μ.Χ. CO2 (ppm) 2010 μ.Χ. 1850 μ.Χ. Έτη ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ 2008 - ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

Χιλιάδες Έτη πριν από σήμερα (2010) Κυκλικές μεταβολές Figure 6.3. Variations of deuterium (δD; black), a proxy for local temperature, and the atmospheric concentrations of the greenhouse gases CO2 (red), CH4 (blue), and nitrous oxide (N2O; green) derived from air trapped within ice cores from Antarctica and from recent atmospheric measurements (Petit et al., 1999; Indermühle et al., 2000; EPICA community members, 2004; Spahni et al., 2005; Siegenthaler et al., 2005a,b). The shading indicates the last interglacial warm periods. Interglacial periods also existed prior to 450 ka, but these were apparently colder than the typical interglacials of the latest Quaternary. The length of the current interglacial is not unusual in the context of the last 650 kyr. The stack of 57 globally distributed benthic δ18O marine records (dark grey), a proxy for global ice volume fluctuations (Lisiecki and Raymo, 2005), is displayed for comparison with the ice core data. Downward trends in the benthic δ18O curve reflect increasing ice volumes on land. Note that the shaded vertical bars are based on the ice core age model (EPICA community members, 2004), and that the marine record is plotted on its original time scale based on tuning to the orbital parameters (Lisiecki and Raymo, 2005). The stars and labels indicate atmospheric concentrations at year 2000. Χιλιάδες Έτη πριν από σήμερα (2010) ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ 2008 - ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

Η ενδεκαετής ηλιακή δραστηριότητα από το 1600 εως το 2000 ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ 2008 - ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

IPCC, 2013, Chapter 1 Figure 1.1 | Main drivers of climate change. The radiative balance between incoming solar shortwave radiation (SWR) and outgoing longwave radiation (OLR) is influenced by global climate ‘drivers’. Natural fluctuations in solar output (solar cycles) can cause changes in the energy balance (through fluctuations in the amount of incoming SWR). Human activity changes the emissions of gases and aerosols, which are involved in atmospheric chemical reactions, resulting in modified O3 and aerosol amounts. O3 and aerosol particles absorb, scatter and reflect SWR, changing the energy balance. Some aerosols act as cloud condensation nuclei modifying the properties of cloud droplets and possibly affecting precipitation. Because cloud interactions with SWR and LWR are large, small changes in the properties of clouds have important implications for the radiative budget. Anthropogenic changes in GHGs (e.g., CO2, CH4, N2O, O3, CFCs) and large aerosols (>2.5 μm in size) modify the amount of outgoing LWR by absorbing outgoing LWR and re-emitting less energy at a lower temperature. Surface albedo is changed by changes in vegetation or land surface properties, snow or ice cover and ocean colour (Section 2.3). These changes are driven by natural seasonal and diurnal changes (e.g., snow cover), as well as human influence (e.g., changes in vegetation types) (Forster et al., 2007).

Figure 2.24 | Global annual average lower stratospheric (top) and lower tropospheric (bottom) temperature anomalies relative to a 1981–2010 climatology from different data sets. STAR does not produce a lower tropospheric temperature product. Note that the y-axis resolution differs between the two panels. IPCC, 2013, Chapter 2

Figure 1: Layer mean temperature variations in northern hemisphere summer (JJA) at layers 925-500 hPa, 500-300 hPa, 100-50 hPa and 50-30 hPa calculated from NCEP reanalysis and FU-Berlin datasets and filtered from natural variations for three latitudinal belts a) 5N-30N, b) 30N - 60N and c) 60N - 90N. The respective summer normalised time series of temperature from RICH dataset at levels 850 hPa, 500 hPa, 50 hPa and 30 hPa are also illustrated as well as the NCEP tropopause pressure. The trends lines before and after 1979 are superimposed. Grey lines denote NCEP reanalysis variations. Green lines denote variations as depicted in the FU-Berlin analysis, while purple dotted lines the RICH data temperature. The units at vertical axis are in degrees oC except for the tropopause that is in hPa. Zerefos et al., 2014

IPCC, 2007 Ψυχρές νύχτες Ψυχρές μέρες Θερμές νύχτες Θερμές μέρες FAQ 3.3, Figure 1. Observed trends (days per decade) for 1951 to 2003 in the frequency of extreme temperatures, defined based on 1961 to 1990 values, as maps for the 10th percentile: (a) cold nights and (b) cold days; and 90th percentile: (c) warm nights and (d) warm days. Trends were calculated only for grid boxes that had at least 40 years of data during this period and had data until at least 1999. Black lines enclose regions where trends are significant at the 5% level. Below each map are the global annual time series of anomalies (with respect to 1961 to 1990). The orange line shows decadal variations. Trends are significant at the 5% level for all the global indices shown. Adapted from Alexander et al. (2006). IPCC, 2007

Μέση βροχόπτωση το χειμώνα στη Μεσόγειο από ιστορικές και άλλες πηγές από το 1500 έως το 2002. (Luterbacher et al., 2006)

FAQ 3.2, Figure 1. The most important spatial pattern (top) of the monthly Palmer Drought Severity Index (PDSI) for 1900 to 2002. The PDSI is a prominent index of drought and measures the cumulative deficit (relative to local mean conditions) in surface land moisture by incorporating previous precipitation and estimates of moisture drawn into the atmosphere (based on atmospheric temperatures) into a hydrological accounting system. The lower panel shows how the sign and strength of this pattern has changed since 1900. Red and orange areas are drier (wetter) than average and blue and green areas are wetter (drier) than average when the values shown in the lower plot are positive (negative). The smooth black curve shows decadal variations. The time series approximately corresponds to a trend, and this pattern and its variations account for 67% of the linear trend of PDSI from 1900 to 2002 over the global land area. It therefore features widespread increasing African drought, especially in the Sahel, for instance. Note also the wetter areas, especially in eastern North and South America and northern Eurasia. Adapted from Dai et al. (2004b). IPCC, 2007

Λίμνη Αράλη 1973 Λίμνη Αράλη 2004 Η λίμνη Αράλη συρρικνώθηκε κατά 75% από το 1967. Η λίμνη Τσαντ στην Αφρική συρρικνώθηκε κατά 95% από το 1963. Η στάθμη της Νεκράς θάλασσας μειώθηκε κατά 25μ τα τελευταία 50 χρόνια. Η ακτογραμμή στο Μπαγκλαντές πρέπει να επανασχεδιαστεί λόγω απωλειών στη θάλασσα. Η παγωμένη επιφάνεια στο όρος Κιλιμάντζαρο στην Αφρική έχει μειωθεί περισσότερο από 80% Δορυφορικές εικόνες της ξήρανσης της λίμνης Αράλης στην Κεντρική Ασία, με διαφορά 30 ετών ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ 2008 - ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

Ενδείξεις αλλαγής της στάθμης της θάλασσας τα τελευταία 22 χιλιάδες χρόνια στη Μεσόγειο M. Anzidei ~8-6 ka Wells (Israel) Grotta Verde (Sardinia) ~22 ka Cosquer (France) ~3.5ka Bronze age Sites (Israel) ~2ka Roman age Sites (Med) ~0.5ka Bizanthyne Ανθρω- πόκαινος ~2.5ka Greek age -120 m -8.5 m -6 m -2.5 m -1.35 m -0.5 m χρόνος 1-2 mm/yr EGU 2008 - Vienna

SW Turkey – seismic region Cleopatra’s bath Twelve islands r.s.l.c.> 3m in 1.6 ka Kekova The Lycian tombs r.s.l.c.> 4m in 2.5 ka

Λεπτομέρεια από παράσταση στην αψίδα του Γαλερίου όπως φωτογραφήθηκε προπολεμικά από το Γερμανικό Αρχαιολογικό Ινστιτούτο (αριστερά) και όπως φωτογραφήθηκε σήμερα από το συγγραφέα (δεξιά). Ζερεφός, 1984 19

20

Mean Air Temperature SRES A1B: Mean Air Temperature Change between 2021-2050 and 1961-1990 2021-2050, SRES A1B : Over Greece Mean annual air Temperature increase by 1.4 oC. 2071-2100: Over Greece Mean annual air Temperature increase by 2.8 oC (SRES B2) up to 3.9 oC (SRES A2) Temperature increase is more significant during summer and autumn than during winter and spring. Temperature increase is more prominent over land. SRES A1B: Mean Air Temperature Change between 2071-2100 and 1961-1990 Mean Air Temperature Change between 2071-2100 and 1961-1990

Precipitation 2021-2050, SRES A1B: SRES A1B: Mean Annual Precipitation Percentage Change Between 2021-2050 and 1961-1990 2021-2050, SRES A1B: Over Greece Mean annual Precipitation is predicted to decrease by 6.5%. 2071-2100: Over Greece Mean annual Precipitation is predicted to decrease by 5% (SRES B2) and by 18% (SRES A1B, SRES A2) SRES A1B: Mean Annual Precipitation Percentage Change Between 2071-2100 and 1961-1990 Mean Annual Precipitation Percentage Change Between 2071-2100 and 1961-1990

Relative Humidity SRES A1B: Percentage Change of Mean annual Relative Humidity between 2021-2050 and 1961-1990 2021-2050, SRES A1B: Over Continental Greece Mean annual Relative Humidity is predicted to decrease by 2%. 2071-2100: Over Continental Greece Mean annual Relative Humidity is predicted to decrease for 2.5% up to 4% (SRES B2) and for 6% up to 10% (SRES A2) Relative Humidity decrease is predicted to be more significant for summer season. SRES A1B: Percentage Change of Mean annual Relative Humidity between 2071-2100 and 1961-1990 Percentage Change of Mean annual Relative Humidity between 2071-2100 and 1961-1990

Wind Speed For Greece as a whole mean annual Wind Speed will be not change during 21th century 2071-2100: Mean annual Wind Speed is predicted to increase up to 5% over Aegean and on the contrary is predicted to decrease up to 5% over Ionian During summer Etesian Winds will be increase significantly up to 10% SRES A1B: Mean annual Wind Speed Percentage Change between 2021-2050 and 1961-1990 SRES A1B: Mean annual Wind Speed Percentage Change between 2071-2100 and 1961-1990 Mean annual Wind Speed Percentage Change between 2071-2100 and 1961-1990

Cloud Fractional Cover SRES A1B: Mean annual Cloud Cover Percentage Change between 2021-2050 and 1961-1990 2021-2050, SRES A1B: Over Greece Mean annual Cloud fractional Cover is predicted to be reduced by 6% 2071-2100: Mean annual Cloud fractional Cover is predicted to be reduced by 8% (SRES B2) by 12% (SRES A1B) by 14% (SRES A2) SRES A1B: Mean annual Cloud Cover Percentage Change between 2071-2100 and 1961-1990 Mean annual Cloud Cover Percentage Change between 2071-2100 and 1961-1990

Downward Short Wave Surface Radiation 2021-2050, SRES A1B: Mean Annual Downward Short Wave Surface Radiation increase by 1,3 W/m2. 2071-2100: Mean Annual Downward Short Wave Surface Radiation increase by 3,1 W/m2 (SRES B2) by 4,1 W/m2 (SRES A2) The increase is more prominent over land, especially in western and northern parts SRES A1B: Mean Annual Downward Short Wave Surface Radiation Change between 2021-2050 and 1961-1990 SRES A1B: Mean Annual Downward Short Wave Surface Radiation Change between 2071-2100 and 1961-1990 Mean Annual Downward Short Wave Surface Radiation Change between 2071-2100 and 1961-1990

Changes in Costal Areas because of Sea Level Rise Coastal Areas with a) Moderate Vulnerability (green) b) High Vulnerability (red) Coastline Retreat Under Flooding Area

Conclusions for Greece 2021-2050, SRES A1B : Over Greece Mean annual air Temperature increase by 1.4 oC. 2071-2100: Over Greece Mean annual air Temperature increase for 2.8 oC (SRES B2) up to 3.9 oC (SRES A2) Temperature increase is more significant during summer and autumn than during winter and spring. Temperature increase is more prominent over land. 2021-2050, SRES A1B: Over Greece Mean annual Precipitation is predicted to decrease by 6.5%. 2071-2100: Over Greece Mean annual Precipitation is predicted to decrease by 5% under SRES B2 and by 18% under SRES A1B and SRES A2 2021-2050, SRES A1B: Over Continental Greece Mean annual Relative Humidity is predicted to decrease by 2%. 2071-2100: Over Continental Greece Mean annual Relative Humidity is predicted to decrease for 2.5% up to 4% under SRES B2 and for 6% up to 10% under SRES A2 Relative Humidity decrease is predicted to be more significant for summer season.

Conclusions for Greece For Greece as a whole mean annual Wind Speed will be not change during 21th century 2071-2100: Mean annual Wind Speed is predicted to increase up to 5% over Aegean and on the contrary is predicted to decrease up to 5% over Ionian During summer Etesian Winds will be increase significantly up to 10% 2021-2050, SRES A1B: Over Greece Mean annual Cloud fractional Cover is predicted to be reduced by 6% 2071-2100: Mean annual Cloud fractional Cover is predicted to be reduced by 8% under SRES B2, by 12% under SRES A1B and by 14% under SRES A2 2021-2050, SRES A1B: Mean Annual Downward Short Wave Surface Radiation increase by 1,3 W/m2. 2071-2100: Mean Annual Downward Short Wave Surface Radiation increase by 3,1 W/m2 under SRES B2 and by 4,1 W/m2 under SRES A2 The increase is more prominent over land, especially in western and northern parts Transportation Cost for the infrastructure maintenance €594,8m/year to €195m/year depending on the GHG emissions Cost of delays in service due to climate change (extreme events, overheating of infrastructure etc.): €28bn to €9.3bn

Ανωμαλία στη θερμοκρασία (ºC) Έτος Οι πολύ υψηλές θερμοκρασίες στην Ευρώπη το θέρος του 2003 θα αποτελούν τον κανόνα μέχρι το 2040 και θα θεωρούνται χαμηλές μετά το 2060! ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ 2008 - ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ