ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΧΩΡΟΣ ΚΑΤΑΣΤΑΣΗΣ.
Advertisements

ΣΧΕΣΙΑΚΗ ΑΛΓΕΒΡΑ 2 ΜΑΘΗΜΑ 4.
Περιγραφή Σημάτων Συνεχούς Χρόνου
ΗΥ430 ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ & MATLAB
ΓΡΗΓΟΡΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ-ΦΙΛΤΡΑ.
Εκπαιδευτής: Tάσος Μπούντης Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών
GEORG CANTOR ΜΑΡΙΝΑΚΗ ΚΩΝΣΤΑΝΤΙΝΑ ΑΜ:3318 Μάθημα: Ιστορία της Λογικής
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Laplace.
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Laplace.
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z.
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ.
ΨΗΦΙΑΚΗ ΕΠΕΞΕΡΓΑΣΙΑ ΣΗΜΑΤΩΝ.
Τι είναι συνάρτηση Ορισμός
ΧΑΟΣ και (μη-) προβλεψιμότητα Σίμος Ιχτιάρογλου Σπουδαστήριο Θεωρητικής Μηχανικής Τομέας Αστροφυσικής, Αστρονομίας και Μηχανικής Τμήμα Φυσικής Α.Π.Θ.
Δισδιάστατα Σήματα και Συστήματα #1
Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
Σήματα και Φασματικές Μέθοδοι στη Γεωπληροφορική
Γιάννης Σταματίου Τεχνικές αντιστροφής γεννητριών συναρτήσεων Webcast 7.
Γιάννης Σταματίου Μερικά προβλήματα μέτρησης
Η. Τζιαβός - Γ. Βέργος Σήματα και φασματικές μέθοδοι στη γεωπληροφορική 2014/2015ΑΠΘ/ΤΑΤΜ Τομέας Γεωδαισίας και Τοπογραφίας 3 ο Εξάμηνο Σήματα και Φασματικές.
Ο Μετασχηματισμός Laplace και ο Μετασχηματισμός Ζ
Γιώργος Γεωργιάδης (σύμφωνα με τις παραδόσεις του Λευτέρη Κυρούση)
Ευστάθεια Συστημάτων Αυτομάτου Ελέγχου:
Η. Τζιαβός - Γ. Βέργος Σήματα και φασματικές μέθοδοι στη γεωπληροφορική 2013/2014ΑΠΘ/ΤΑΤΜ Τομέας Γεωδαισίας και Τοπογραφίας 3 ο Εξάμηνο Σήματα και Φασματικές.
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Ανάλυση Συστημάτων Αυτομάτου Ελέγχου: Διαγράμματα Nyquist & Nichols ΚΕΣ 01 – Αυτόματος Έλεγχος.
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
ΣΥΝΟΛΑ.
ΜΕΤΑΤΟΠΙΣΗ ΣΥΝΑΡΤΗΣΗΣ
Θεωρία Γράφων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Βασικά Στοιχεία Ψηφιακής Επεξεργασίας Σήματος (ΙΙ)
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΚΑΖΑΝΤΖΙΔΟΥ ΧΡΙΣΤΙΝΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
Άρτεμις Κωσταρίγκα Επίβλεψη: Ν. Καραμπετάκης ΙΟΥΝΙΟΣ 2005
ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Πατσαλίδου Κυριακή
Βασικά Στοιχεία Ψηφιακής Επεξεργασίας Σήματος (V).
Advanced Data Indexing (Προηγμένη ευρετηρίαση δεδομένων) Ροές Δεδομένων (3 ο Μέρος)
Μετασχηματισμός Fourier
Μετασχηματισμός Fourier
Π ΑΝΕΠΙΣΤΗΜΙΟ Δ ΥΤΙΚΗΣ Μ ΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Θεωρία Σημάτων και Συστημάτων 2013 Μάθημα 3 ο Δ. Γ. Τσαλικάκης.
Μετασχηματισμός Fourier Διακριτού Χρόνου Δειγματοληψία
Ψηφιακή Επεξεργασία Σήματος και Εικόνας
Ειδικά Μαθηματικά Ενότητα 10: Γενικευμένα ολοκληρώματα-σειρές Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των.
Σήματα και Συστήματα Σήματα και Συστήματα Διακριτού Χρόνου Μετασχηματισμός Ζ Χαροκόπειο Πανεπιστήμιο Τμήμα Πληροφορικής και Τηλεματικής Χρήστος Μιχαλακέλης,
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
Μεταβατική απόκριση ενός συστήματος δεύτερης τάξης Σχήμα 5.7 σελίδα 370.
Χρονική απόκριση και θέση των ριζών στο μιγαδικό επίπεδο Γενική μορφή συνάρτησης μεταφοράς κλειστού βρόχου Όπου Δ(s)=0 είναι η χαρακτηριστική εξίσωση του.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 3η Μετασχηματισμός Fourier.
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 4η Δειγματοληψία.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 8 η Διάλεξη ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΧΡΗΣΗΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΤΩΝ ΡΙΖΩΝ Το σύστημα ελέγχου.
ΜΕΘΟΔΟΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
Συναρτήσεις Πληθάριθμοι Συνόλων
Θεωρία Σημάτων και Συστημάτων 2013
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II
ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Θεωρία Σημάτων: ανάλυση στο χρονικό και στο φασματικό πεδίο Fourier Transform ενεργειακών σημάτων Σειρά Fourier για περιοδικά σήματα.
ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Θεωρία Σημάτων: ανάλυση στο χρονικό και στο φασματικό πεδίο Θεωρία Γραμμικών Συστημάτων Συνεχής συνέλιξη (Continuous convolution) Διακριτού.
Κλασσική Μηχανική Ενότητα 8: ΟΙ ΕΞΙΣΩΣΕΙΣ LAGRANGE
Η Έννοια της τυχαίας Διαδικασίας
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Αναλυτικό πρόγραμμα διδασκαλίας του μαθήματος
Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Αναλυτικό πρόγραμμα διδασκαλίας του μαθήματος
ΦΑΣΗ φ ΤΗΣ ΑΠΛΗΣ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ
Δισδιάστατα Σήματα και Συστήματα #1
Μεταγράφημα παρουσίασης:

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z

Μετασχηματισμός - z Ιδιότητες Μετασχηματισμού-z Γραμμικότητα Χρονική Ολίσθηση Κλιμάκωση στο Επίπεδο-z Παραγώγιση Συνέλιξη στο Πεδίο του Χρόνου Κατοπτρισμός στο Πεδίο του Χρόνου Συσχέτιση Συζυγές Σήμα Συνέλιξη στο Μιγαδικό Επίπεδο

Μετασχηματισμός - z Ιδιότητες Μονόπλευρου Μετασχηματισμού-z Αριστερή Ολίσθηση Δεξιά Ολίσθηση Θεώρημα Αρχικής Τιμής Θεώρημα Τελικής Τιμής Μετασχηματισμός-z Περιοδικών Σημάτων

Μετασχηματισμός - z Αναλυτικές Συναρτήσεις Συνθήκες Cauchy-Riemann Αρμονικές Συναρτήσεις Αναλυτικές Συναρτήσεις και Δυναμοσειρές

Μετασχηματισμός - z Αναλυτικές Συναρτήσεις-Θεώρημα του Cauchy Έστω f(z) μία αναλυτική συνάρτηση στο δίσκο Β(α, R) & έστω γ μία κλειστή καμπύλη που κείται εντός του δίσκου. Τότε: Im{z} Β(α, R) Re{z}

Μετασχηματισμός - z Ανώμαλα Σημεία Μιγαδικής Συνάρτησης Μια Μιγαδική Συνάρτηση f(z) έχει μία απομονωμένη ανωμαλία στο σημείο z=α αν η f(z) να ορίζεται και να είναι αναλυτική στον κύκλο Β(α, R)-{α} αλλά όχι στον Β(α, R). Im{z} Παραδείγματα Β(α, R) Re{z}

Μετασχηματισμός - z Απαλειφόμενα Ανώμαλα Σημεία Μιγαδικής Συνάρτησης Αν η Μιγαδική Συνάρτηση f(z) έχει μία απομονωμένη ανωμαλία στο ση-μείο z=α, τότε το σημείο z=α είναι ένα απαλείψιμο σημείο ανωμαλίας αν και μόνο αν:

Μετασχηματισμός - z Ανώμαλα Σημεία Μιγαδικής Συνάρτησης- Πόλοι Αν η Μιγαδική Συνάρτηση f(z) έχει μία απομονωμένη ανωμαλία στο ση-μείο z=α, τότε το σημείο z=α είναι ένας πόλος της f() αν : 1. 2. Αν η Μιγαδική Συνάρτηση f(z) έχει ένα πόλο στο σημείο z=α και m είναι ο μικρότερος θετικός ακέραιος για τον οποίο το ακόλουθο όριο : είναι πεπερασμένο, τότε θα λέμε ότι η f(z)έχει ένα πόλο τάξης m στο z=a

Μετασχηματισμός - z Ανώμαλα Σημεία Μιγαδικής Συνάρτησης- Πόλοι H Μιγαδική Συνάρτηση f(z) μπορεί να γραφεί ως όπου g(z) η ακόλουθη αναλυτική συνάρτηση:

Μετασχηματισμός - z Ανώμαλα Σημεία Μιγαδικής Συνάρτησης- Πόλοι Το τμήμα: της g(z) ονομάζεται ανώμαλο ή κύριο τμήμα της f(z) στο z=α. Υπολογισμός των Α-(m-k) , k=0,1,…,m-1

Μετασχηματισμός - z Ανώμαλα Σημεία Μιγαδικής Συνάρτησης -Δυναμοσειρές είδαμε ότι: Άρα: και:

Μετασχηματισμός - z Ολοκληρωτικό Υπόλοιπο Μιγαδικής Συνάρτησης Στροφικός Αριθμός ή Δείκτης Καμπύλης ως προς σημείο Ο n(C,α) είναι ΑΚΕΡΑΙΟΣ!! Θεώρημα Cauchy

Μετασχηματισμός - z Ολοκληρωτικό Υπόλοιπο Μιγαδικής Συνάρτησης Ας υποθέσουμε ότι η μιγαδική συνάρτηση έχει ένα πόλο, πολλαπλότητας m, στο σημείο α, μίας περιοχής του μιγαδικού επιπέδου-z δηλαδή: Τότε ορίζουμε σαν ολοκληρωτικό υπόλοιπο της στο σημείο α την παρακάτω ποσότητα:

Μετασχηματισμός - z Ολοκληρωτικά Υπόλοιπά Μιγαδικής Συνάρτησης Ας υποθέσουμε ότι η μιγαδική συνάρτηση είναι αναλυτική συνάρτηση εκτός από ένα πεπερασμένο πλήθος μεμονωμένων ανώ-μαλων σημείων z1, z2,…zN και έστω καμπύλη γ γ

Αντίστροφος Μετασχηματισμός - z Ανάπτυγμα σε Απλά Κλάσματα Αν R(z) είναι μια ρητή μιγαδική συνάρτηση με Ν πόλους στα σημεία αi, i=1,2,…Ν, τότε: Όπου Si(z) το ανώμαλο τμήμα της ρητής μιγαδικής συνάρτησης R(z) στο z=αi και P(z) Πολυώνυμο.

Αντίστροφος Μετασχηματισμός - z Ουσιώδη Ανώμαλα Σημεία Μιγαδικής Συνάρτησης Αν μια απομονωμένη ανωμαλία δεν είναι ούτε απαλείψιμη ούτε πόλος, θα λέμε ότι είναι ουσιώδες ανώμαλο σημείο της συνάρτησης.

Αντίστροφος Μετασχηματισμός - z Ανώμαλα Σημεία Μιγαδικής Συνάρτησης- Σύνοψη Έστω z=α μία απομονωμένη ανωμαλία της μιγαδικής συνάρτησης f(z) και έστω η σειρά Laurent. Τότε: το z=α είναι ένα απαλείψιμο ανώμαλο σημείο αν και μόνο αν το z=α είναι ένας πόλος τάξης m αν και μόνο αν & το z=α είναι ένα ουσιώδες ανώμαλο σημείο αν για μια απειρία αρνητικών τιμών του n.

Αντίστροφος Μετασχηματισμός - z Έστω κλειστή καμπύλη C η οποία περικλείει Ν πόλους (στα σημεία zi , i=0,1,…N-1), της μιγαδικής ρητής συνάρτησης και ανήκει εξ ολοκλήρου στην Περιοχή Σύγκλισης της μιγαδικής συνάρτησης, τότε: Im{z} C (k) Re{z}

Αντίστροφος Μετασχηματισμός - z Ολοκληρωτικό Υπόλοιπο Μιγαδικής Συνάρτησης Ας υποθέσουμε ότι η μιγαδική ρητή συνάρτηση έχει ένα πόλο, πολλαπλότητας m, στο σημείο α, δηλαδή: Τότε ορίζουμε σαν ολοκληρωτικό υπόλοιπο της στο σημείο α την παρακάτω ποσότητα:

Αντίστροφος Μετασχηματισμός - z Θεώρημα Ολοκληρωτικών Υπολοίπων Αν υποθέσουμε ότι μία κλειστή καμπύλη C, που ανήκει στην περιοχή σύγκλισης του περικλείει Ν πόλους (στα σημεία zi , i=0,1,…N-1), της μιγαδικής ρητής συνάρτησης , τότε:

Αντίστροφος Μετασχηματισμός - z Άλλες Μέθοδοι Υπολογισμού Μέθοδος Αναπτύγματος σε Δυναμοσειρά