Ενδεικτικές Ασκήσεις Αστρονομίας

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΣΥΜΒΟΛΗ ΚΥΜΑΤΩΝ.
Advertisements

Γένεση, εξέλιξη και μέλλον του Σύμπαντος
Κεντρικά σημεία της θεωρίας
Φυσική Γ Λυκείυ Γενικής Παιδείας - Το Φώς - Η Φύση του Φωτός
Γιάννης Σειραδάκης Τμήμα Φυσικής, ΑΠΘ
Μαθηματικά & Λογοτεχνία
Υπολείμματα υπερκαινοφανών
ΑΣΤΡΙΚΑ ΦΑΣΜΑΤΑ ΧΑΡΗΣ ΒΑΡΒΟΓΛΗΣ.
Παρατηρήσεις Ιονισμένου Υδρογόνου
Το Ηλεκτρομαγνητικό Φάσμα
ΤΟ ΚΕΝΤΡΟ ΤΟΥ ΓΑΛΑΞΙΑ ΜΑΣ Γιάννης Σειραδάκης Τμήμα Φυσικής, ΑΠΘ.
ΤΑ ΑΣΤΕΡΙΑ “οι άλλοι ήλιοι”
Κωνσταντίνος Βασιλόπουλος & Δημήτρης Μιχαλακόπουλος
ΟΜΑΔΙΚΗ ΕΡΓΑΣΙΑ ΑΠΟ ΜΑΘΗΤΕΣ ΤΗΣ Β ΛΥΚΕΙΟΥ ΤΟΥ 1ου ΓΕ. Λ
ΑΠΟΣΤΑΣΕΙΣ ΚΑΙ ΜΕΓΕΘΗ ΑΣΤΕΡΩΝ
Το πλανητικό σύστημα.
Τελικές καταστάσεις αστέρων
Ήλιος o Πρώτος «…κι έχουμε στο κατάρτι μας βιγλάτορα
Οι πλανήτες είναι οι εξής:
ΑΠΟΣΤΑΣΕΙΣ ΚΑΙ ΜΕΓΕΘΗ ΑΠΛΑΝΩΝ
Εργαστήριο του μαθήματος «Εισαγωγή στην Αστροφυσική»
Γραμμικά φάσματα απορρόφησης των αστέρων και ταξινόμησή τους
Φάσματα Διπλών Αστέρων
Ταξινόμηση κατά Hubble, Σμήνη Γαλαξιών, Σκοτεινή Ύλη
Διανυσματικό πεδίο μεταβολής ηλεκτρονικής πυκνότητας
Η γένεση και ο «θάνατος» των αστέρων Λουκάς Βλάχος
Δυνάμεις του 10: κοσμικό ταξίδι, από το Σύμπαν των γαλαξιών μέχρι το άτομο.
Η ΜΕΛΕΤΗ ΤΟΥ ΗΛΙΑΚΟΥ ΣΥΣΤΗΜΑΤΟΣ
ΠΛΑΝΗΤΕΣ.
ΑΦΡΟΔΙΤΗ ΑΓΓΕΛΟΠΟΥΛΟΥ- ΔΗΜΗΤΡΑ ΓΕΩΡΓΑΚΟΠΟΥΛΟΥ
Ενδεικτικές Ασκήσεις Αστρονομίας
ΤΑΛΑΝΤΩΣΕΙΣ 1. Μεγέθη που χαρακτηρίζουν μια ταλάντωση
Η ΜΟΙΡΑ ΤΟΥ ΣΥΜΠΑΝΤΟΣ- ΠΑΡΕΛΘΟΝ ΚΑΙ ΜΕΛΛΟΝ
ΑΠΟΣΤΑΣΕΙΣ ΚΑΙ ΜΕΓΕΘΗ ΑΣΤΕΡΩΝ
Ταξινόμηση αστρικών φασμάτων Διάγραμμα Η-R
ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΤΑΧΥΤΗΤΩΝ
Ερευνητική Εργασία Ο Θάνατος(;) των άστρων
Εργαστήριο του μαθήματος «Εισαγωγή στην Αστροφυσική»
Ελληνογερμανική Αγωγή Εξωπλανήτης είναι κάθε πλανήτης που περιστρέφεται γύρω από ένα άλλο άστρο, είναι δηλαδή κάθε πλανήτης που ανήκει σε κάποιο.
Σχέση Μάζας - Φωτεινότητας 1 Οι 4 καταστατικές εξισώσεις της δομής ενός μη περιστρεφόμενου, σφαιρικά ομογενούς αστέρα dM/dr = 4π ρ(r) r 2 dP/dr = –G M(r)
Ενδεικτικές Ασκήσεις Αστρονομίας
Βάλια Σκούρα Μελίνα Μερτζάνη
ΔΙΑΣΤΗΜΑ ΚΑΙ ΠΛΑΝΗΤΕΣ ΓΙΩΡΓΟΣ ΣΚΟΥΡΑΣ.
Ηλιακό Σύστημα Ως Ηλιακό Σύστημα συνήθως εννοείται ο Ήλιος με τους οκτώ πλανήτες που περιστρέφονται γύρω από αυτόν. Αν θα θέλαμε να είμαστε ακριβείς όμως,
ΚΑΛΛΙΤΕΧΝΙΚΗ ΑΠΕΙΚΟΝΙΣΗ ΤΗΣ ΕΠΙΦΑΝΕΙΑΣ ΤΗΣ ΓΗΣ ΜΕ ΤΟΝ ΗΛΙΟ ΩΣ ΚΟΚΚΙΝΟ ΓΙΓΑΝΤΑ ΔΕΝ ΥΠΑΡΧΕΙ ΛΟΓΟΣ ΑΝΗΣΥΧΙΑΣ. ΟΛΑ ΑΥΤΑ ΘΑ ΣΥΜΒΟΥΝ ΣΕ 5 ΔΙΣΕΚΑΤΟΜΜΥΡΙΑ.
Επίκουρος Καθηγητής Αστροφυσικής
ΟΙ ΠΛΑΝΗΤΕΣ ΜΑΣ ΕΡΜΗΣ,ΑΦΡΟΔΙΤΗ,ΓΗ, ΑΡΗΣ,ΔΙΑΣ,ΚΡΟΝΟΣ,
Σύνοψη Διάλεξης 1 Το παράδοξο του Olber: Γιατί ο ουρανός είναι σκοτεινός; Γιατί δεν ζούμε σε ένα άπειρο Σύμπαν με άπειρη ηλικία. Η Κοσμολογική Αρχή Το.
ΑΣΤΕΡΙΑ.
Διάλεξη 8 Κοσμολογικές Παράμετροι
Διάλεξη 13 Βαρυονική και Σκοτεινή Ύλη Βοηθητικό Υλικό: Liddle κεφ. 9.1.
Ο Γαλαξίας μας - ι Συστήματα συντεταγμένων Μέτρηση αποστάσεων
Σύνοψη Διάλεξης 2 Η Διαστολή του Σύμπαντος υπακούει στο νόμο του Hubble Το Σύμπαν περιλαμβάνει ποικιλία γνωστών σωματίων. Η πυκνότητα ενέργειας Ακτινοβολία.
Καμπύλη Περιστροφής του Γαλαξία Καμπύλη Περιστροφής του Γαλαξία Ο Γαλαξίας μας - V Τρίτη 27/11/2012.
Διάλεξη 11 Απόσταση Φωτεινότητας Μετρώντας την επιταχυνόμενη διαστολή με μακρινούς υπερκαινοφανείς Βοηθητικό Υλικό: Liddle A.2.-A2.3.
Κωνσταντίνος Βελαλής & Παναγιώτης Πατατούκος
H καμπύλη περιστροφής του γαλαξία μας
Από τον Νικόλα Φοινικαρίδη Φεβρουάριος, 2017
Υπεύθυνος καθηγητής – Κ . Βαλανίδης
Παρατηρήσεις Ουδέτερου Υδρογόνου
ΕΞΕΡΕΥΝΗΣΗ ΔΙΑΣΤΗΜΑΤΟΣ!
ΤΟ ΗΛΙΑΚΟ ΜΑΣ ΣΥΣΤΗΜΑ.
Εργασία της μαθήτριας Άννας Μαρίας της τάξης ΣΤ
ΗΛΙΑΚΟ ΣΥΣΤΗΜΑ Χριστιάνα Αρης.
Τα παιχνίδια του φωτός (2)
ΠΛΑΝΗΤΕΣ.
Ηλιακό Σύστημα.
Πως μετράμε το πόσο μακριά είναι τα ουράνια αντικείμενα
IMF vs SFR Πόσα μικρά και πόσα μεγάλα αστέρια γεννιούνται? Και πόσα μέσα σε ένα έτος?
Η κοσμική σκόνη.
Μεταγράφημα παρουσίασης:

Ενδεικτικές Ασκήσεις Αστρονομίας Εισαγωγή στην Αστρονομία Γιάννης Σειραδάκης

Κεφάλαιο 3+4 Άσκηση Στις 21 Μαρτίου και στις 21 Σεπτεμβρίου του ίδιου έτους φωτογραφίζουμε έναν κοντινό αστέρα δύο φορές: (α) χρησιμοποιώντας το φίλτρο Β, όπου το μέγεθος του αστέρα βρέθηκε ότι ήταν mB = 8.5 και (β) χρησιμοποιώντας το φίλτρο V, όπου το μέγεθος του αστέρα βρέθηκε ότι ήταν mV = 7.9. Από τις μετρήσεις στις δύο εποχές βρέθηκε ότι η παράλλαξη του αστέρα είναι π = 0.01″. Μπορείτε να βρείτε (κατά προσέγγιση) την τάξη φωτεινότητας του αστέρα και, αν ναι, πώς; Υποθέστε ότι δεν υπάρχει μεσοαστρική απορρόφηση. Δίνεται το διάγραμμα H-R   Απάντηση Από την παράλλαξη υπολογίζω την απόσταση του αστέρα, r = 100 pc. Από τις φωτογραφίες στα δύο διαφορετικά φίλτρα υπολογίζω το δείκτη χρώματος B-V = mB – mV = +0.6 (και άρα τη θερμοκρασία Teff ~6×103 K). Από τη σχέση MV – mV = 5 – 5×log(r) υπολογίζω το απόλυτο οπτικό μέγεθος, MV = 2.9. Από τα ΜV και B-V τοποθετώ τον αστέρα στο διάγραμμα H-R και βρίσκω (προσεγγιστικά) την τάξη φωτεινότητάς του. Από το διάγραμμα συνάγεται ότι ο αστέρας ανήκει στην Κύρια Ακολουθία, Άρα η τάξη φωτεινότητάς του είναι V.

Κεφάλαιο 3+11 Άσκηση Θεωρητικοί υπολογισμοί και παρατηρησιακά δεδομένα υποστηρίζουν τη θεωρία ότι στο κέντρο του Γαλαξία υπάρχει μια ευμεγέθης μελανή οπή. Ένα νέφος υδρογόνου παρατηρείται να περιφέρεται γύρω από το κέντρο του Γαλαξία. Με ραδιοαστρονομικές παρατηρήσεις βρέθηκε ότι η ακτινοβολία της υπέρλεπτης υφής του υδρογόνου (συχνότητα ηρεμίας = 1420.41 MHz) παρατηρείται σε συχνότητα 1421.23 MHz. Αν αυτό το νέφος αερίου βρίσκεται σε απόσταση R = 0.2 pc από την μελανή οπή και περιφέρεται σε κυκλική τροχιά, (α) να βρείτε την ταχύτητα του νέφους, (β) να βρείτε αν πλησιάζει ή απομακρύνεται από μας και (γ) να υπολογίστε την μάζα της μελανής οπής.   Απάντηση Η διαφορά μεταξύ της συχνότητας ηρεμίας και της παρατηρούμενης συχνότητας είναι: Από τη σχέση Doppler έχουμε: (β) Επειδή η ταχύτητα είναι αρνητική, το νέφος μας πλησιάζει. Η μάζα, Μ, της μελανής οπής δίνεται από τη σχέση: , όπου R είναι ακτίνα της τροχιάς του νέφους και ν, η ταχύτητά του. Άρα: (γ)

Κεφάλαιο «Εξέλιξη» Άσκηση Το παράπλευρο σχήμα περιγράφει την εξελικτική πορεία ενός αστέρα. (α) Ποια είναι η τελευταία, χρονικά, θέση του αστέρα; (β) Σε ποια θέση ο αστέρας απομακρύνεται από την κύρια ακολουθία; (γ) Σε ποια θέση σχηματίζεται το πλανητικό νεφέλωμα; (δ) Σε ποια θέση έχει ο αστέρας την ελάχιστη φωτεινότητα; (ε) Ποια είναι η θέση της ελάχιστης επιφανειακής θερμοκρασίας; Απάντηση (α) Η θέση 5 (μεμονωμένος λευκός νάνος). (β) Η θέσεις 1→2 (έχει εξαντληθεί τα υδρογόνο στον πυρήνα του και οδεύει προς την περιοχή των γιγάντων). (γ) Η θέση 4 (ο αστέρας έχει διέλθει από το στάδιο των γιγάντων, όπου δημιουργήθηκε κέλυφος αερίου λόγω αστρικού ανέμου και στον πυρήνα του έχουν εξαντληθεί τα πυρηνικά καύσιμα. Ο πυρήνας αποτελείται από εκφυλισμένη ύλη: λευκός νάνος) (δ) Η θέση 5 (ο λευκός νάνος έχει πολύ μικρή επιφάνεια, έτσι, παρά τη μεγάλη θερμοκρασία του έχει πολύ μικρή φωτεινότητα. (ε) Η θέση 3 (οι ερυθροί γίγαντες έχουν τη μικρότερη ενεργό θερμοκρασία).

Κεφάλαιο «Αποστάσεις – Μεγέθη» Άσκηση Ένας αστέρας βρίσκεται πίσω από μεσοαστρικό νέφος που προκαλεί απορρόφηση ΑV = 0.4 αστρικά μεγέθη. Ο αστέρας έχει παράλλαξη π = 0".05 και είναι μόλις ορατός με γυμνό μάτι. Να εξετάσετε αν ο αστέρας είναι φωτεινότερος ή όχι από τον Ήλιο στο οπτικό τμήμα του φάσματος (M = +4.8). Απάντηση Επειδή είναι μόλις ορατός με γυμνό μάτι, έχει φαινόμενο μέγεθος 6. Από τη σχέση M – m + A = 5 – 5lοgr βρίσκω, M = m – A + 5 – 5 lοg(20) επειδή παράλλαξη 0".05 αντιστοιχεί σε απόσταση 20 pc. Για m = 6 και A = 0.4 βρίσκουμε Μ = 4.1. Άρα ο αστέρας είναι φωτεινότερος από τον Ήλιο.

Κεφάλαιο «Ήλιος - Γενικά» Άσκηση Η πυκνότητα ενός χαρακτηριστικού αστέρα της κύριας ακολουθίας ελαττώνεται από το κέντρο προς την επιφάνειά του σύμφωνα με τη σχέση: όπου ρc είναι πυκνότητα στο κέντρο του και R η ακτίνα του αστέρα. Να βρεθεί (α) η σχέση m(r), (β) η μάζα Μ(R) των αστέρων της κύριας ακολουθίας ως συνάρτηση της ακτίνας τους και (γ) να αποδειχθεί ότι η μέση πυκνότητα των αστέρων αυτών δίνεται από τη σχέση <ρ> = 0.4×ρc Απάντηση (α) Αντικαθιστώντας στη σχέση dm(r) = ρ 4πr2dr το ρ που δίδεται, βρίσκουμε: (β) Μ(R) = m(R) = 8πρcR3/15 (γ) <ρ> = Μ/(4π/3)R3. Αντικαθιστώντας το Μ από το (β), βρίσκουμε <ρ> = 0.4×ρc.

Κεφάλαιο «Γαλαξίες» Άσκηση Στον quasar 3C273 παρατηρήθηκαν φασματικές γραμμές στα εξής μήκη κύματος: 2212 Å, 3240 Å, 3967 Å και 4316 Å. Από εργαστηριακές μετρήσεις γνωρίζουμε τις εξής γραμμές: άνθρακα 1910 Å, μαγνησίου 2798 Å, νέου 3426 Å και οξυγόνου 3727 Å. (α) Γνωρίζοντας, ότι η φασματική μετάθεση δεν μεταβάλλει τη σχετική θέση δύο γραμμών, είναι δυνατό τα παραπάνω στοιχεία να βρίσκονται σ’ αυτόν τον quasar και γιατί; (β) Αν ναι, τότε ποια είναι η απόσταση του quasar 3C273; (Θεωρήστε ότι H0 = 73 km/sec/Mpc) Απάντηση (α) Αν οι παρατηρούμενες φασματικές γραμμές ανήκουν στα προαναφερθέντα στοιχεία και έχουν μετατεθεί προς το ερυθρό λόγω της διαστολής του Σύμπαντος, θα πρέπει η φασματική μετάθεση, z = (λ-λο)/λο = Δλ/λ, και των τεσσάρων γραμμών να είναι ίδια. Πράγματι, οι υπολογισμοί δίνουν και για τις τέσσερις: z = 0.158. Άρα η απάντηση είναι ότι και τα τέσσερα αυτά στοιχεία υπάρχουν στον quasar. (β) Από τη σχέση z = v/c βρίσκω για τον quasar v = zc = 0.158×3 × 105 km/sec = 4.74 × 104 km/sec. Από τη σχέση του Hubble, v = Hor, βρίσκω ότι r = v/Ho = 47 400/65 = 649 Mpc.