Ρυθμός ροής ή Παροχή V (m3/s) ή M ή (kg/s) Δυναμική των ρευστών Ασυμπίεστα (υγρά) Πραγματικά ρευστά Συμπιεστά (αέρια) Ρυθμός ροής ή Παροχή V (m3/s) ή M ή (kg/s) Μέση γραμμική ταχύτητα û = V/S [m3/(s.m2) = m/s] Ρυθμός ογκομετρικής ροής V = û.S Ρυθμός μαζικής ροής Μ= ρ.û.S = ρ.V ρ – πυκνότητα, S – εγκάρσια διατομή
Υδραυλική ακτίνα Επιφάνεια εγκάρσιας διατομής S rH = ----------------------------------------------- = --- Διαβρεχόμενη περίμετρος διατομής π d S π.d2/4 de rH = ---= ----------- = --- π π.d 4 de = 4rH de – ισοδύναμη διάμετρος
α S α2 α rH = ---= ------ = ---- π 4α 4 de = α α β 2α.β de = -------- α +β S α.β rH = ---= ----------- π 2(α +β) di d0 S π.d02/4 - π.di2/4 d0 - di rH = ---= -------------------- = --------- π π.d0 + π.di 4 de = d0-di
Μια συνιστώσα του πεδίου ταχύτητας π.χ. Ροή σε κλειστούς σωλήνες Μονοδιάστατη ροή Μια συνιστώσα του πεδίου ταχύτητας π.χ. Ροή σε κλειστούς σωλήνες Μόνιμη ροή Αμετάβλητες με το χρόνο: ρ, C, T και P ρ - πυκνότητα, C- συγκέντρωση, T- θερμοκρασία, P - πίεση Μη μόνιμη ροή Μεταβλητές με το χρόνο: ρ ή/και C ή/και T ή/και P
Στρωτή / Νηματώδη / Γραμμική / Ιξώδη ροή Τυρβώδη / Στροβιλώδη ροή Στρωτή / Νηματώδη / Γραμμική / Ιξώδη ροή Πείραμα Reynolds Τυρβώδη / Στροβιλώδη ροή
du F = - μ.Α------ dy A Αύξηση ταχύτητας διάχυση A Ρυθμός διάτμησης Συντελεστής εσωτερικής τριβής συμβολίζεται μ ή η ή δυναμικό ιξώδες
du F = - μ.Α------ dy A Αύξηση ταχύτητας A διάχυση F du τ = ---- = - μ------ Νόμος της εσωτερικής τριβής του Newton A dy Διατμητική τάση, F m.γ m.du/dt m.du ορμή τ = ---- = ------ = ----------- = ------- = -------------------------- A A A A.dt Επιφάνεια . Χρόνος
Συντελεστής εσωτερικής τριβής ή δυναμικό ιξώδες
μ ν = ---- Κινηματικό ιξώδες ή ιξώδη διαχυτότητα ρ F.dz N.m N.s μ = - ------= ---------- = ----- (S.I) A.du m2.m/s m2 dyn.s ή P (Poise)= --------- (CGS) cm2 μ N.s N.s.m N.s.m m2 ν = ---- = -------------- = --------- = ----------- = ---- (S.I.) ρ m2.kg/m3 kg N/(m/s2) s cm2 ή Stokes = ------ (CGS) s
Liquid Viscosity in mPa.s Water at 0°C 1.79 Water at 20°C 1.002 Water at 100°C 0.28 Glycerin at 0°C 12070 Glycerin at 20°C 1410 Glycerin at 30°C 612 Glycerin at 100°C 14.8 Mercury at 20°C 1.55 Mercury at 100°C 1.27 Motor Oil SAE 30 200 Motor Oil SAE 60 1000 Ketchup 50.000 Gas Viscosity in 10-6 Pa.s Air at 100K 7.1 Air at 300K 18.6 Air at 400K 23.1 Hydrogen at 300K 9.0 Helium at 300K 20.0 Oxygen at 300K 20.8 Nitrogen at 300K 17.9 Xenon at 300K 23.2
μ = k.ρ.t μ – ιξώδες k – σταθερά κυψελίδα ρ- πυκνότητα t- χρόνος
Μ- σταθερά οργάνου
Μ- σταθερά οργάνου
Δυνάμεις αδράνειας û.de.ρ û .de Πείραμα Reynolds Στρωτή / Νηματώδη / Γραμμική / Ιξώδη ροή Re < 2.100 Μεταβατική περιοχή 2.100< Re < 4.000 Πλήρως ανεπτυγμένηΤυρβώδη / Στροβιλώδη ροή Re > 10.000 (>4.000) Δυνάμεις αδράνειας û.de.ρ û .de Re = --------------------------= --------- = ------ Δυνάμεις τριβών μ ν Re – αριθμός Reynolds , û – μέση γραμμική ταχύτητα, de.- ισοδύναμη διάμετρος, ρ – πυκνότητα, μ – δυναμικό ιξώδες, ν – κινηματικό ιξώδες
Τυρβώδη ροή σχηματισμός δινών Τυρβώδη / Στροβιλώδη ροή Re > 10.000 Τυρβώδη ροή σχηματισμός δινών απώλεια κινητικής ενέργειας σε θερμότητα Ιξώδες δίνης ή Δινοϊξώδες - μt Δινοϊξώδες – μη πραγματική ιδιότητα του ρευστού – εξαρτάται από την ένταση και το βαθμό στροβιλισμού και διαφέρει τοπικά du τt = -μt------ dy du Συνολικά: τ = - (μ + μt)------ dy
de = 4[( πdκ2/4 – 10πdα2/4)/ (πdκ + 10πdα)] Απλός αυλοφόρος εναλλάκτης θερμότητας αποτελείται από κέλυφος εσωτερικής Διαμέτρου dκ= 1 m που φέρει 10 αυλούς εξωτερικής διαμέτρου dα=5cm, για την κυκλοφορία του ψυχρού νερού. Εάν η παροχή του θερμού νερού είναι 5m3/h και η θερμοκρασία του 80 οC, να υπολογισθεί το υπόδειγμα ροής του θερμού νερού. Δυνάμεις αδράνειας û.de.ρ Re = --------------------------= ----------- Δυνάμεις τριβών μ V = û.S û = V/S S rH = --- π de = 4rH ρ(80οC) = 0,972kg/m3 S = πdκ2/4 – 10πdα2/4 , de = 4[( πdκ2/4 – 10πdα2/4)/ (πdκ + 10πdα)] π = πdκ + 10πdα de = dκ - 10dα = 1m – 10.0,05m = 0,5m S = πdκ2/4 – 10πdα2/4 =3,14.12/4 – 10.3,14.0,052/4 = 0,765 m2 û = V/S =5m3/(60s.0,765m2)=0,109 m/s Re = u.de.ρ/μ = (0,109 m/s . 0,5m .0,972kg/m3)/ 0,35.10-3 kg/m.s = 151 Re = 151 Στρωτή ή Νηματώδη ή Γραμμική ή Ιξώδη ροή
Λύση Δυνάμεις αδράνειας û.de.ρ Re = --------------------------= -------- Δυνάμεις τριβών μ V = û.S û = V/S S = π.de2/4 û.de (V/S).de 4V.de 4V Re = -------= ----------- = --------- = ------- ν ν ν.π.de2 ν.π.de 4V 4V Re1 = ------- = 1250 και Re2 = --------- = 10000 ν.π.de1 ν.π.de2 4V Re2 ------- ν.π.de2 10000 -----= ---------- = -------- = 8 de1 = 8 de2 4V 1250 Re1 ------- ν.π.de1