Alexander J Summers Department of Computing Imperial College London

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Click here to start Important !: You have to enable macros for this game (Tools ->Macros -> Security -> «medium»).
Advertisements

1 Please include the following information on this slide: Παρακαλώ, συμπεριλάβετε τις παρακάτω πληροφoρίες στη διαφάνεια: Name Giannakodimou Aliki Kourkouta.
MARIE CURIE  Project about Project  Πειραματικό Λύκειο Πανεπιστημίου Μακεδονίας  Team 3 Ξενίδης Γιώργος Βαρελτζίδου Μαρίνα Γαβριηλίδου Ελένη.
6 Η ΠΑΡΟΥΣΙΑΣΗ: ΠΑΝΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΟΙΝΩΝΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ: ΕΠΙΚΟΙΝΩΝΙΑΣ, ΜΕΣΩΝ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΜΑΘΗΜΑ: ΕΙΣΑΓΩΓΗ ΣΤΗ ΔΙΑΦΗΜΙΣΗ.
WRITING TEACHER ELENI ROSSIDOU ©Υπουργείο Παιδείας και Πολιτισμού.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
6/26/2015HY220: Ιάκωβος Μαυροειδής1 HY220 Asynchronous Circuits.
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
Day 45: Computer repair JSIS E 111: Intensive Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εκπαιδευτικά Προγράμματα με Χρήση Η/Υ Ι ΘΕΩΡΙΕΣ ΜΑΘΗΣΗΣ ΚΑΙ ΝΕΕΣ ΤΕΧΝΟΛΟΓΙΕΣ (Learning Theories and.
Προσομοίωση Δικτύων 3η Άσκηση Δημιουργία, διαμόρφωση μελέτη σύνθετων τοπολογιών.
Time Management Matrix Assignment Submitted By Safwan Zubair October 21, 2013 BUS Contemporary Business Practice Professor Nankin.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
ΔΕΥΤΕΡΟ ΣΕΜΙΝΑΡΙΟ ΕΠΙΜΟΡΦΩΤΩΝ ΑΘΗΝΑ, ΣΕΠΤΕΜΒΡΙΟΣ 2011 Ο.ΕΠ.ΕΚ Αρχική Συνεδρία Γ. Τύπας, Σύμβουλος Παιδαγωγικού Ινστιτούτου και μέλος του Δ.Σ. του Ινστιτούτου.
ERASMUS+ - ΒΔ 1 Σχολική Εκ π αίδευση – Εκ π αίδευση Ενηλίκων Ημερίδα Παροχής Πληροφοριών για τη Διαχείριση και Υλοποίηση των Εγκεκριμένων Σχεδίων (Πρόσκληση.
Ψηφιακά Παιχνίδια και μάθηση Δρ. Νικολέτα Γιαννούτσου Εργαστήριο Εκπαιδευτικής Τεχνολογίας.
Διαχείριση Διαδικτυακής Φήμης! Do the Online Reputation Check! «Ημέρα Ασφαλούς Διαδικτύου 2015» Ε. Κοντοπίδη, ΠΕ19.
From Applying Theory to Theorising Practice Achilleas Kostoulas Epirus Institute of Technology.
Μαθαίνω με “υπότιτλους”
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Ερωτήσεις –απαντήσεις Ομάδων Εργασίας
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Φάσμα παιδαγωγικής ανάπτυξης
Jane Austen Pride and Prejudice (περηφάνια και προκατάληψη)
Λ. Μήτρου, Επικ. Καθηγήτρια – Πανεπιστήμιο Αιγαίου Κανονιστικές και Κοινωνικές Διαστάσεις της Κοινωνίας της Πληροφορίας /3 Χειμερινό εξάμηνο
Matrix Analytic Techniques
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Class X: Athematic verbs II
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Δημοςιευςη επιςτημονικης ερευνας
Το χάρτινο θέατρο εμφανίζεται στη Ευρώπη στα τέλη του 18ου αιώνα
Adjectives Introduction to Greek By Stephen Curto For Intro to Greek
Μουσενίκας Δημήτριος Βλάχος Χριστόδουλος
Οσμές στη Σχεδίαση του Λογισμικού
Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.)
2013 edition Wilfred E. Major
Μία πρακτική εισαγωγή στην χρήση του R
Επικοινωνία & Δημόσιες Σχέσεις στον Τουρισμό
Ανάλυση Γεωργικού Οικογενειακού Εισήματος (ΓΟΕ)
Postgraduate Courses related to Clinical Criminology and Legal Psychology - Italy WE CAN – ΜΠΟΡΟΥΜΕ! Cyberbullying – Κυβερνοεκφοβισμός Δίκτυο Δράσης για.
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
Δημοςιευςη επιςτημονικης ερευνας
JSIS E 111: Elementary Modern Greek
aka Mathematical Models and Applications
GLY 326 Structural Geology
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Alexander J Summers Department of Computing Imperial College London
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
ΤΙ ΕΙΝΑΙ ΤΑ ΜΟΆΙ;.
νλμ : The Computational Content of Classical Natural Deduction
Semantics.
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
ΜΕΤΑΦΡΑΣΗ ‘ABC of Selling’. ΤΟ ΑΛΦΑΒΗΤΑΡΙ ΤΩΝ ΠΩΛΗΣΕΩΝ
ΙΚΑΝΟΠΟΙΗΣΗΣ ΕΠΙΣΚΕΠΤΩΝ ΕΛΛΗΝΙΚΟ ΟΡΓΑΝΙΣΜΟ ΤΟΥΡΙΣΜΟΥ
Find: Force on culvert in [lb/ft]
Τεχνολογία & εφαρμογές μεταλλικών υλικών
3Ω 17 V A3 V3.
Variable-wise and Term-wise Recentering
Find: ρc [in] from load (4 layers)
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
CPSC-608 Database Systems
Erasmus + An experience with and for refugees Fay Pliagou.
Class X: Athematic verbs II © Dr. Esa Autero
Μεταγράφημα παρουσίασης:

Alexander J Summers Department of Computing Imperial College London νλμ : A Curry-Howard Correspondence for a Canonical Classical Natural Deduction Alexander J Summers Department of Computing Imperial College London Set context of work/intro

Objectives Investigate computational content of Gentzen’s classical natural deduction Aim to faithfully inhabit the original logic Based on an adequate set of logical connectives Define reductions encompassing existing work Aim for the simulation of existing control operators Cut Elimination for classical sequent calculus Has well-understood and accepted reduction rules Reach something as general as cut elimination Adapt the λμ-calculus of Parigot to these aims What we’re going to talk about the effect of different connectives on term calculi Write this at the end, when all other slides are done.#

Extending λμ-calculus Γ, x:A ⊢ x : A | Δ Γ, x:A ⊢ M : B | Δ Γ ⊢ N : A | Δ Γ ⊢ λx.M : A→B | Δ Γ ⊢ [α]N :  | α:A, Δ Γ ⊢ M : A→B | Δ Γ ⊢ N : A | Δ Γ ⊢ M :  | α:A, Δ Γ ⊢ (M N) : B | Δ Γ ⊢ μα.M : A | Δ

Extending λμ-calculus Γ, x:A ⊢ x : A | Δ Γ, x:A ⊢ M : B | Δ Γ ⊢ N : A | Δ Γ ⊢ λx.M : A→B | Δ Γ ⊢ [α]N :  | α:A, Δ Γ ⊢ M : A→B | Δ Γ ⊢ N : A | Δ Γ ⊢ M :  | α:A, Δ Γ ⊢ (M N) : B | Δ Γ ⊢ μα.M : A | Δ

Extending λμ-calculus Judgements have multiple conclusions Γ, x:A ⊢ x : A | Δ Γ, x:A ⊢ M : B | Δ Γ ⊢ N : A | Δ Γ ⊢ λx.M : A→B | Δ Γ ⊢ [α]N :  | α:A, Δ Γ ⊢ M : A→B | Δ Γ ⊢ N : A | Δ Γ ⊢ M :  | α:A, Δ Γ ⊢ (M N) : B | Δ Γ ⊢ μα.M : A | Δ

Extending λμ-calculus Judgements have multiple conclusions  Γ, x:A ⊢ x : A | Δ Γ, x:A ⊢ M : B | Δ Γ ⊢ N : A | Δ Γ ⊢ λx.M : A→B | Δ Γ ⊢ [α]N :  | α:A, Δ Γ ⊢ M : A→B | Δ Γ ⊢ N : A | Δ Γ ⊢ M :  | α:A, Δ Γ ⊢ (M N) : B | Δ Γ ⊢ μα.M : A | Δ

Extending λμ-calculus Judgements have multiple conclusions  Parigot: derivations can be transformed Γ, x:A ⊢ x : A | Δ Γ, x:A ⊢ M : B | Δ Γ ⊢ N : A | Δ Γ ⊢ λx.M : A→B | Δ Γ ⊢ [α]N :  | α:A, Δ Γ ⊢ M : A→B | Δ Γ ⊢ N : A | Δ Γ ⊢ M :  | α:A, Δ Γ ⊢ (M N) : B | Δ Γ ⊢ μα.M : A | Δ

Extending λμ-calculus Judgements have multiple conclusions  Parigot: derivations can be transformed Γ, x:A ⊢ x : A | Δ Γ, x:A ⊢ M : B | Δ Γ ⊢ N : A | Δ Γ ⊢ λx.M : A→B | Δ Γ ⊢ [α]N :  | α:A, Δ Γ ⊢ M : A→B | Δ Γ ⊢ N : A | Δ Γ ⊢ M :  | α:A, Δ Γ ⊢ (M N) : B | Δ Γ ⊢ μα.M : A | Δ

Extending λμ-calculus Judgements have single conclusions  Parigot: derivations can be transformed Γ, ¬Δ, x:A ⊢ x : A Γ, x:A ⊢ M : B | Δ Γ ⊢ N : A | Δ Γ ⊢ λx.M : A→B | Δ Γ ⊢ [α]N :  | α:A, Δ Γ ⊢ M : A→B | Δ Γ ⊢ N : A | Δ Γ ⊢ M :  | α:A, Δ Γ ⊢ (M N) : B | Δ Γ ⊢ μα.M : A | Δ

Extending λμ-calculus Judgements have single conclusions  Γ, ¬Δ, x:A ⊢ x : A Γ, x:A ⊢ M : B | Δ Γ ⊢ N : A | Δ Γ ⊢ λx.M : A→B | Δ Γ ⊢ [α]N :  | α:A, Δ Γ ⊢ M : A→B | Δ Γ ⊢ N : A | Δ Γ ⊢ M :  | α:A, Δ Γ ⊢ (M N) : B | Δ Γ ⊢ μα.M : A | Δ

Extending λμ-calculus Γ, ¬Δ, x:A ⊢ x : A Γ, x:A ⊢ M : B | Δ Γ ⊢ N : A | Δ Γ ⊢ λx.M : A→B | Δ Γ ⊢ [α]N :  | α:A, Δ Γ ⊢ M : A→B | Δ Γ ⊢ N : A | Δ Γ ⊢ M :  | α:A, Δ Γ ⊢ (M N) : B | Δ Γ ⊢ μα.M : A | Δ

Extending λμ-calculus Γ, ¬Δ, x:A ⊢ x : A Γ, x:A ⊢ M : B | Δ Γ ⊢ N : A | Δ Γ ⊢ λx.M : A→B | Δ Γ ⊢ [α]N :  | α:A, Δ Γ ⊢ M : A→B | Δ Γ ⊢ N : A | Δ Γ ⊢ M :  | α:A, Δ Γ ⊢ (M N) : B | Δ Γ ⊢ μα.M : A | Δ

Extending λμ-calculus Γ, ¬Δ, x:A ⊢ x : A Γ, ¬Δ, x:A ⊢ M : B Γ, ¬Δ ⊢ N : A Γ, ¬Δ ⊢ λx.M : A→B Γ, ¬Δ, α: ¬A ⊢ [α]N :  Γ, ¬Δ ⊢ M : A→B Γ, ¬Δ ⊢ N : A Γ, ¬Δ, α: ¬A ⊢ M :  Γ, ¬Δ ⊢ (M N) : B Γ, ¬Δ ⊢ μα.M : A

Extending λμ-calculus Γ, ¬Δ, x:A ⊢ x : A Γ, ¬Δ, x:A ⊢ M : B Γ, ¬Δ ⊢ N : A Γ, ¬Δ ⊢ λx.M : A→B Γ, ¬Δ, α: ¬A ⊢ [α]N :  Γ, ¬Δ ⊢ M : A→B Γ, ¬Δ ⊢ N : A Γ, ¬Δ, α: ¬A ⊢ M :  Γ, ¬Δ ⊢ (M N) : B Γ, ¬Δ ⊢ μα.M : A

Extending λμ-calculus Greek ‘special’ assumptions are restricted  Γ, ¬Δ, x:A ⊢ x : A Γ, ¬Δ, x:A ⊢ M : B Γ, ¬Δ ⊢ N : A Γ, ¬Δ ⊢ λx.M : A→B Γ, ¬Δ, α: ¬A ⊢ [α]N :  Γ, ¬Δ ⊢ M : A→B Γ, ¬Δ ⊢ N : A Γ, ¬Δ, α: ¬A ⊢ M :  Γ, ¬Δ ⊢ (M N) : B Γ, ¬Δ ⊢ μα.M : A

Extending λμ-calculus Greek ‘special’ assumptions are restricted  Idea: merge the two alphabets Γ, ¬Δ, x:A ⊢ x : A Γ, ¬Δ, x:A ⊢ M : B Γ, ¬Δ ⊢ N : A Γ, ¬Δ ⊢ λx.M : A→B Γ, ¬Δ, α: ¬A ⊢ [α]N :  Γ, ¬Δ ⊢ M : A→B Γ, ¬Δ ⊢ N : A Γ, ¬Δ, α: ¬A ⊢ M :  Γ, ¬Δ ⊢ (M N) : B Γ, ¬Δ ⊢ μα.M : A

Extending λμ-calculus Greek ‘special’ assumptions are restricted  Idea: merge the two alphabets Γ, ¬Δ, x:A ⊢ x : A Γ, ¬Δ, x:A ⊢ M : B Γ, ¬Δ ⊢ N : A Γ, ¬Δ ⊢ λx.M : A→B Γ, ¬Δ, α: ¬A ⊢ [α]N :  Γ, ¬Δ ⊢ M : A→B Γ, ¬Δ ⊢ N : A Γ, ¬Δ, α: ¬A ⊢ M :  Γ, ¬Δ ⊢ (M N) : B Γ, ¬Δ ⊢ μα.M : A

Extending λμ-calculus Greek ‘special’ assumptions are restricted  Idea: merge the two alphabets Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ N : A Γ ⊢ λx.M : A→B Γ, α: ¬A ⊢ [α]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, α: ¬A ⊢ M :  Γ ⊢ (M N) : B Γ ⊢ μα.M : A

Extending λμ-calculus Greek ‘special’ assumptions are restricted  Idea: merge the two alphabets Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ N : A Γ ⊢ λx.M : A→B Γ, α: ¬A ⊢ [α]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, α: ¬A ⊢ M :  Γ ⊢ (M N) : B Γ ⊢ μα.M : A

Extending λμ-calculus Greek ‘special’ assumptions are restricted  Idea: merge the two alphabets Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ N : A Γ ⊢ λx.M : A→B Γ, α: ¬A ⊢ [α]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, α: ¬A ⊢ M :  Γ ⊢ (M N) : B Γ ⊢ μα.M : A

Extending λμ-calculus Greek ‘special’ assumptions are restricted  Idea: merge the two alphabets Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ N : A Γ ⊢ λx.M : A→B Γ, x: ¬A ⊢ [x]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus All assumptions have equal status  Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ N : A Γ ⊢ λx.M : A→B Γ, x: ¬A ⊢ [x]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ N : A Γ ⊢ λx.M : A→B Γ, x: ¬A ⊢ [x]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ N : A (→I) Γ ⊢ λx.M : A→B Γ, x: ¬A ⊢ [x]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ N : A (→I) ? Γ ⊢ λx.M : A→B Γ, x: ¬A ⊢ [x]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Special case of (¬E) (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ N : A (→I) Γ ⊢ λx.M : A→B Γ, x: ¬A ⊢ [x]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Special case of (¬E) (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ x : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [x]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Special case of (¬E) First premise must be an axiom  (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ x : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [x]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Special case of (¬E) First premise must be an axiom  (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ x : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [x]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Special case of (¬E) First premise must be an axiom  (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ x : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [ x ]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Special case of (¬E) First premise must be an axiom  (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ x : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [ x ]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Special case of (¬E) First premise can be any proof  (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus The rule (¬I) is entirely missing  (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Γ, x:A ⊢ M :   (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Extending λμ-calculus Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

The νλμ-calculus Γ, x:A ⊢ M :  Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

The νλμ-calculus The νλμ-calculus Γ, x:A ⊢ M :  Γ, x:A ⊢ x : A (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Important features The νλμ-calculus Γ, x:A ⊢ M :  Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Important features The νλμ-calculus Γ, x:A ⊢ M :  Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Important features The νλμ-calculus Γ, x:A ⊢ M :  Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

Important features  νx.M ¬A [M]N μx.M

Important features  νx.M ¬A [M]N μx.M

Important features  νx.M ¬A [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  ¬A νx.M [M]N μx.M

Important features  - bottom type represents ‘no output’  ¬A - negated type for continuation with input of type A νx.M - terms to explicitly represent continuations Informally, terms which consume an input but produce no output [M]N - continuation application Pass the argument N to the continuation M μx.M - control operator Capture the surrounding ‘context’ and bind it to x What about reductions? Many alternative ideas exist, particularly for the μ-bound terms Identify a common theme, and generalise the existing work  ¬A νx.M [M]N μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC)

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC)

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC)

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC)

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) μx.M : A

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A z : A

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) νz. Γ ⊢ μx.M : A z : A : ¬A

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) νz. Γ ⊢ μx.M : A z : A : ¬A

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) νz. Γ ⊢ μx.M : A z : A : ¬A

μ reductions.. General idea: μ-bound terms consume their contexts. Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) νz. Γ ⊢ μx.M : A z : A : ¬A

Ec{μx.M} → M< νz.Ec{z} / x > μ reductions.. More formally, using a special kind of context Ec Ec{μx.M} → M< νz.Ec{z} / x > This behaviour can be broken down into ‘local’ rules The reductions are non-confluent, e.g., No obvious reason to choose one over the other Natural non-confluence, as in the sequent calculus [μx.M]μy.N M< νz.[z]μy.N / x > M< νz.[μx.M]z / x >

Control operators Griffin: C operator for double-negation elimination Compare terms inhabiting double-negation elimination (DNE) Parigot: λy.μα.[γ](y (λx.μδ.[α]x)) Bierman/Py: λy.μα.(y (λx.[α]x)) νλμ calculus: λy.μx.[y]x The μ-binding construct provides delimited control Delimited by continuation applications [M]N Behaviour is related to the F operator of Felleisen We argue that F is ‘better’ than C for DNE

Cut Elimination and Classical Sequent Calculus Classical Cut Elimination: well-known reductions Term calculi built on this notion of reduction X [vanBakel et.al.], Dual [Wadler], λμμ [Ariola&Herbelin] Unrestricted reductions are non-confluent We give an injective encoding of λμμ in νλμ calculus Reductions are preserved Typings are preserved (in both directions) Result depends on general μ reductions, plus a generalised β rule (see paper) First encoding of general classical cut elimination into a natural deduction paradigm (?) - ~ - ~

Conclusions Aim to faithfully inhabit the original logic Aim for a set of reductions encompassing existing work Aim for the simulation of existing control operators Another yardstick: classical sequent calculus Has fairly well-understood and accepted reduction rules Aim to be able to encode, and simulate these The νλμ calculus manages all of this 

Future Work Strong Normalisation proof Adapt symmetric reducibility candidates But still hard, due to general reductions ‘Inverse’ encoding back to sequent calculus Some reductions harder to preserve than others Understand what these mean for the sequent calculus Confluent sub-systems of νλμ how does CBN differ from Parigot’s λμ ? how does CBV differ from Ong and Stewart’s CBV λμ ? Further comparison with delimited control operators Similar to work of Herbelin et. al.

More Details

More Details (don’t panic) Coming soon to a thesis near you Also, there’s a paper on my web page google for “Alexander J Summers” Thank you for listening 