νλμ : The Computational Content of Classical Natural Deduction

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Click here to start Important !: You have to enable macros for this game (Tools ->Macros -> Security -> «medium»).
Advertisements

Γειά σας.
1 Please include the following information on this slide: Παρακαλώ, συμπεριλάβετε τις παρακάτω πληροφoρίες στη διαφάνεια: Name Giannakodimou Aliki Kourkouta.
“ Ἡ ἀ γάπη ἀ νυπόκριτος. ἀ ποστυγο ῦ ντες τ ὸ πονηρόν, κολλώμενοι τ ῷ ἀ γαθ ῷ, τ ῇ φιλαδελφί ᾳ ε ἰ ς ἀ λλήλους φιλόστοργοι, τ ῇ τιμ ῇ ἀ λλήλους προηγούμενοι.
DR-Prolog: A System for Defeasible Reasoning with Rules and Ontologies on the Semantic Web Αναπαράσταση και Επεξεργασία Γνώσης Άνοιξη 2009.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
6/26/2015HY220: Ιάκωβος Μαυροειδής1 HY220 Asynchronous Circuits.
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Lesson 6c: Around the City I JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
Lesson 1a: Let’s Get Started JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Ενδείξεις κυστεκτομής σε μη μυοδιηθητικό καρκίνο ουροδόχου κύστης Αθανάσιος Γ. Παπατσώρης Επ. Καθηγητής Ουρολογίας Β’ Ουρολογική Κλινική Πανεπιστημίου.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
ERASMUS+ - ΒΔ 1 Σχολική Εκ π αίδευση – Εκ π αίδευση Ενηλίκων Ημερίδα Παροχής Πληροφοριών για τη Διαχείριση και Υλοποίηση των Εγκεκριμένων Σχεδίων (Πρόσκληση.
Ψηφιακά Παιχνίδια και μάθηση Δρ. Νικολέτα Γιαννούτσου Εργαστήριο Εκπαιδευτικής Τεχνολογίας.
Διαχείριση Διαδικτυακής Φήμης! Do the Online Reputation Check! «Ημέρα Ασφαλούς Διαδικτύου 2015» Ε. Κοντοπίδη, ΠΕ19.
Μαθαίνω με “υπότιτλους”
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Φάσμα παιδαγωγικής ανάπτυξης
Jane Austen Pride and Prejudice (περηφάνια και προκατάληψη)
Λ. Μήτρου, Επικ. Καθηγήτρια – Πανεπιστήμιο Αιγαίου Κανονιστικές και Κοινωνικές Διαστάσεις της Κοινωνίας της Πληροφορίας /3 Χειμερινό εξάμηνο
Διάλεξε τη σωστή απάντηση
JSIS E 111: Elementary Modern Greek
JSIS E 111: Elementary Modern Greek
Matrix Analytic Techniques
Ψηφιακeς ιδEες και αξIες
Αλγόριθμοι Ταξινόμησης – Μέρος 3
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Class X: Athematic verbs II
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Υδρόβια Φυτά Θεοφανώ Κούλεντρου Rippling Water (Basic)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
JSIS E 111: Elementary Modern Greek
Adjectives Introduction to Greek By Stephen Curto For Intro to Greek
Μουσενίκας Δημήτριος Βλάχος Χριστόδουλος
Εντολές Δικτύων Command Line.
Το ιερό δισκοπότηρο της ΙΕ γλωσσολογίας
«Μεταπτυχιακό Δίπλωμα Ειδίκευσης (ΜΔΕ) «Εφαρμοσμένη Νευροανατομία»
Με συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης (Ε. Κ. Τ.)
Μία πρακτική εισαγωγή στην χρήση του R
Επικοινωνία & Δημόσιες Σχέσεις στον Τουρισμό
Ανάλυση Γεωργικού Οικογενειακού Εισήματος (ΓΟΕ)
Postgraduate Courses related to Clinical Criminology and Legal Psychology - Italy WE CAN – ΜΠΟΡΟΥΜΕ! Cyberbullying – Κυβερνοεκφοβισμός Δίκτυο Δράσης για.
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
JSIS E 111: Elementary Modern Greek
aka Mathematical Models and Applications
GLY 326 Structural Geology
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Alexander J Summers Department of Computing Imperial College London
ΤΙ ΕΙΝΑΙ ΤΑ ΜΟΆΙ;.
Semantics.
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Alexander J Summers Department of Computing Imperial College London
Βάλια Τόλιου, Registry Manager for Greece
ΜΕΤΑΦΡΑΣΗ ‘ABC of Selling’. ΤΟ ΑΛΦΑΒΗΤΑΡΙ ΤΩΝ ΠΩΛΗΣΕΩΝ
ΙΚΑΝΟΠΟΙΗΣΗΣ ΕΠΙΣΚΕΠΤΩΝ ΕΛΛΗΝΙΚΟ ΟΡΓΑΝΙΣΜΟ ΤΟΥΡΙΣΜΟΥ
Find: Force on culvert in [lb/ft]
3Ω 17 V A3 V3.
Variable-wise and Term-wise Recentering
2013 edition Wilfred E. Major
Find: ρc [in] from load (4 layers)
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
CPSC-608 Database Systems
Erasmus + An experience with and for refugees Fay Pliagou.
Class X: Athematic verbs II © Dr. Esa Autero
Μεταγράφημα παρουσίασης:

νλμ : The Computational Content of Classical Natural Deduction Alexander J Summers Department of Computing Imperial College London Set context of work/intro

Curry-Howard Correspondence Historically relates minimal logic and λ-calculus Formulas relate to types Proofs relate to terms Proof reductions relate to β reductions Logic and calculus were invented independently We can borrow the idea of the correspondence.. Existing calculus => logic-based type system Existing logic => new programming calculus Extract the ‘computational content’ of the logic For Classical Logic, some work exists, but nothing as “nice” as the original correspondence What we’re going to talk about the effect of different connectives on term calculi Write this at the end, when all other slides are done.#

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it)

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it)

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it)

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) (Ax) Γ, x:A ⊢ x : A

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ (M N) : B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ (M N) : B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ (M N) : B

Curry-Howard Correspondence Minimal Natural Deduction (If Lambda Calculus did not exist, it would be necessary to invent it) Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ (M N) : B

Curry-Howard Correspondence Minimal Natural Deduction Reductions? Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ (M N) : B

Curry-Howard Correspondence Minimal Natural Deduction Reductions? A standard notion of proof reduction exists.. Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ (M N) : B

Curry-Howard Correspondence Minimal Natural Deduction Reductions? A standard notion of proof reduction exists.. Furthermore, it gives rise to the β-rule from the λ-calculus! Γ, x:A ⊢ M : B (Ax) (→I) Γ, x:A ⊢ x : A Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ (M N) : B

To extract the computational content of a logic.. Write down the proof rules Write a syntactic representation Label the formulas in contexts Subproofs become subterms Formulas bound correspond to syntax binders If the logic has canonical reduction rules, use them Throw away all the types This is only possible if reduction rules depend on syntax only Now the proof rules form a simple type-assignment system Syntax directed Principal typings Strong Normalisation of typeable terms

What about Classical Logic? Classical Natural Deduction

What about Classical Logic? Classical Natural Deduction (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B (→I) Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A (→E) Γ ⊢ (M N) : B

What about Classical Logic? Classical Natural Deduction (Ax) Γ, x:A ⊢ x : A Γ, x:A ⊢ M : B (→I) Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B (→I) Γ ⊢ λx.M : A→B Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Classical Natural Deduction Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

What about Classical Logic? The νλμ-calculus Γ, x:A ⊢ M :  (Ax) (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

New features The νλμ-calculus Γ, x:A ⊢ M :  Γ, x:A ⊢ x : A (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

New features The νλμ-calculus Γ, x:A ⊢ M :  Γ, x:A ⊢ x : A (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

New features The νλμ-calculus Γ, x:A ⊢ M :  Γ, x:A ⊢ x : A (¬I) Γ, x:A ⊢ x : A Γ ⊢ νx.M : ¬A Γ, x:A ⊢ M : B Γ ⊢ M : ¬A Γ ⊢ N : A (→I) (¬E) Γ ⊢ λx.M : A→B Γ ⊢ [M]N :  Γ ⊢ M : A→B Γ ⊢ N : A Γ, x: ¬A ⊢ M :  (→E) (PC) Γ ⊢ (M N) : B Γ ⊢ μx.M : A

New features  νx.M ¬A [M]N μx.M

New features  νx.M ¬A [M]N μx.M

New features  νx.M ¬A [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  ¬A νx.M [M]N μx.M

New features  - bottom type represents ‘no output’  ¬A - negated type for continuation with input of type A νx.M - terms to explicitly represent continuations Informally, terms which consume an input but produce no output [M]N - continuation application Pass the argument N to the continuation M μx.M - control operator Capture the surrounding ‘context’ and bind it to x What about reductions? Many alternative ideas exist, particularly for the μ-bound terms Identify a common theme, and generalise the existing work  ¬A νx.M [M]N μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC)

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC)

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC)

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC)

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) μx.M : A

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A μx.M

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A μx.M : A

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A z : A

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) νz. Γ ⊢ μx.M : A z : A : ¬A

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) νz. Γ ⊢ μx.M : A z : A : ¬A

μ reductions.. General idea: μ-bound terms consume their contexts Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) νz. Γ ⊢ μx.M : A z : A : ¬A

μ reductions.. General idea: μ-bound terms consume their contexts. Recall the typing rule: Find a term of type ¬A Substitute the term for x Term of type ¬A is a continuation with a ‘hole’ of type A Any context around μx.M must have a ‘hole’ of type A Γ, x: ¬A ⊢ M :  (PC) Γ ⊢ μx.M : A Γ, x: ¬A ⊢ M :  (PC) νz. Γ ⊢ μx.M : A z : A : ¬A

μ reductions.. More formally, using a special kind of context Ec Ec{μx.M} → M< νz.Ec{z} / x > This behaviour can be broken down into ‘local’ rules Each rule consumes one level of surrounding context [μx.M]N → M< νz.[z]N/ x > The resulting rules largely subsume those in the literature Γ, x: ¬A ⊢ M :  (PC) νz. Γ ⊢ μx.M : A z : A : ¬A

Comparisons and related work There is plenty of existing work on similar calculi λμ-calculus of Parigot λC calculus of Griffin Many others and variants Aim to faithfully inhabit the original logic Aim for a set of reductions encompassing existing work Aim for the simulation of existing control operators Another yardstick: classical sequent calculus Has fairly well-understood and accepted reduction rules Aim to be able to encode, and simulate these The νλμ calculus manages all of this 

Details

Details (don’t panic) Coming soon to a thesis near you Also, there’s a paper on my web page google for “Alexander J Summers” Thank you for listening