Prúdenie ideálnej kvapaliny

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
NÁZOV ČIASTKOVEJ ÚLOHY:
Advertisements

Prístroje na detekciu žiarenia
Stredná odborná škola automobilová Moldavská cesta 2, Košice
Výpočty spaľovacích procesov
Vlnenie Kód ITMS projektu:
Elektrický odpor Kód ITMS projektu:
OPAKOVANIE.
Trecia sila Kód ITMS projektu:
Programovanie CNC V modernej dobe vzrastá zložitosť produkovaných výrobkov a z toho vyplívajú nároky na presnosť a spoľahlivosť jednotlivých dielov. Pre.
Medzinárodná sústava jednotiek SI
Zariadenia FACTS a ich použitie v elektrických sieťach
Materiál spracovali študenti 3.I triedy v rámci ročníkového projektu
Mechanická práca Kód ITMS projektu:
Mechanická práca na naklonenej rovine
Teplota a teplo.
Biofyzika tkanív a orgánov
Sily pôsobiace na telesá v kvapalinách
LICHOBEŽNÍK 8. ročník.
Autor: Štefánia Puškášová
STEREOMETRIA REZY TELIES
SNÍMAČE A MERACIE ČLENY PRIETOKU štruktúry, vyhodnocovanie signálov, vlastnosti a oblasti použitia PRS Snímače a prevodníky - Prietok
Kotvené pažiace konštrukcie
Fyzika-Optika Monika Budinská 1.G.
Prístroje na detekciu žiarenia
OHMOV ZÁKON, ELEKTRICKÝ ODPOR VODIČA
TLAK V KVAPALINÁCH A PLYNOCH
ANALYTICKÁ GEOMETRIA.
Príklad na pravidlový fuzzy systém
ŠTRUKTÚRA ATÓMOV A IÓNOV (Chémia pre 1. roč. gymn. s.40-53; -2-
Zhodnosť trojuholníkov
Programové vyhlásenie fyziky
ELEKTRICKÉ SVETLO.
Ročník: ôsmy Typ školy: základná škola Autorka: Mgr. Katarína Kurucová
Vlastnosti kvapalín Kód ITMS projektu:
TRIGONOMETRIA Mgr. Jozef Vozár.
ELEKTROMAGNETICKÉ VLNENIE
Rozpoznávanie obrazcov a spracovanie obrazu
Mechanické kmitanie (kmitavý pohyb) je periodický pohyb, pri ktorom teleso pravidelne prechádza rovnovážnou polohou. Mechanický oscilátor je zariadenie,
Návrh plošných základov v odvodnených podmienkach Cvičenie č.4
Fibonacciho postupnosť a zlatý rez
Základné princípy radiačnej ochrany
Inštruktážna prednáška k úlohám z analytickej chémie
Ako sa nešmyknúť pri chôdzi
Pohyb hmotného bodu po kružnici
Prizmatický efekt šošoviek
Stupne efektívnosti nákladov na výrobu
Oporné konštrukcie Cvičenie č. 7.
Dostredivá sila Ak sa častica pohybuje po zakrivenej dráhe, má dostredivé zrýchlenie a teda naň musí pôsobiť dostredivá sila kde
Družice.
Mechanické vlnenie Barbora Kováčová 3.G.
Rovnoramenný trojuholník
Téma: Trenie Meno: František Karasz Trieda: 1.G.
ELEKTROMAGNETICKÁ INDUKCIA
5. prednáška Genetické programovanie (GP)
Konštrukcia trojuholníka pomocou výšky
CHEMICKÁ VäZBA.
Úvod do pravdepodobnosti
Termodynamika korózie Oxidácia kovu Elektródový potenciál
Atómové jadro.
Rovnice priamky a roviny v priestore
Alternatívne zdroje energie
Opakovanie: pozdĺžna deformácia pružnej tyče
EKONOMICKÝ RAST A STABILITA
Meranie indukcie MP Zeme na strednej škole
Elektronická tachymetria
Radiačná bezpečnosť v optických komunikáciách
Striedavý prúd a napätie
Matematika pre prvý semester Mechaniky
Analýza koeficientu citlivosti v ESO
Kapitola K2 Plochy.
Μεταγράφημα παρουσίασης:

Prúdenie ideálnej kvapaliny Hanka Ostrihoňová

Obsah Základné pojmy hydrodynamiky Rovnica spojitosti = Zákon zachovania hmotnosti Tlaková energia Bernoulliho rovnica = Zákon zachovania energie Použitie Bernoulliho rovnice

Voda a plyn sa privádzajú do domácností a závodov potrubím. Ropovodmi a plynovodmi sa dopravujú do našej republiky ropa a plyn. Olej potrebný na mazanie súčastí strojov a dopravných prostriedkov sa rozvádza tlakovým potrubím. Tepny a žily v ľudskom tele sú sústavou potrubí, ktorá zabezpečuje krvný obeh. Preto poznanie zákonov prúdenia má veľký význam.

Aby sme získali istú predstavu o pohybe častíc kvapaliny, pridáme do prúdiacej kvapaliny ľahký prášok. Z väčšej vzdialenosti nerozoznáme jednotlivé zrnká prášku a vidíme celé krivky utvorené pohybujúcimi sa zrnkami prášku Keď voda prúdi rovnomerne, po istom čase sa rozloženie kriviek ustáli. Jednotlivé zrnká sú ľahké, preto prúdia v tom istom mieste rovnakou rýchlosťou ako častice kvapaliny. Krivky utvorené unášaným práškom sú obrazom trajektórie častíc kvapaliny. Častice sa pohybujú istou rýchlosťou, ich smer je určený dotyčnicou v danom mieste trajektórie.

V opačnom prípade sa prúdenie nazýva neustálené (nestacionárne). Keď je rýchlosť prúdiacej kvapaliny v danom mieste stála (s časom nemenná), nazýva sa takéto prúdenie ustálené (stacionárne). V opačnom prípade sa prúdenie nazýva neustálené (nestacionárne). Prúdnica je taká myslená čiara, ktorej dotyčnica zostrojená v ľubovoľnom bode určuje smer rýchlosti pohybujúcej sa častice kvapaliny. Každým bodom kvapaliny prechádza práve jedna prúdnica. Prúdnice sa nemôžu pretínať. Predstavme si vnútri prúdiacej kvapaliny uzavretú krivku, ktorej každým bodom prechádza prúdnica. Všetky tieto prúdnice tvoria plochu, ktorá sa nazýva prúdová trubica. Kvapalinu ohraničenú touto trubicou nazývame prúdové vlákno.

Rovnica spojitosti (kontinuity) Uvažujeme o ustálenom prúdení kvapaliny v prúdovej trubici s prierezom S. Keď je rýchlosť kvapaliny v, za 1 sekundu pretečie prierezom S objem kvapaliny S.v . Keď je hustota kvapaliny ρ, hmotnosť kvapaliny, ktorá za 1 sekundu pretečie týmto prierezom (hmotnostný tok), je Qm = S . v . ρ Keďže kvapalina nemôže stenami trubice ani vytiecť, ani pritiecť, musí byť hmotnostný tok v ľubovoľnom priereze trubice stály, čiže S . v . ρ = konšt.

Táto rovnica sa nazýva rovnica spojitosti alebo kontinuity a je vyjadrením zákona zachovania hmotnosti pre ustálené prúdenie kvapaliny. Rovnica spojitosti v uvedenom tvare platí aj pre plyny, teda pre všetky tekutiny. Keď uvažujeme o prúdení nestlačiteľnej kvapaliny, tak pri stálej teplote je stála hustota, a preto môžeme rovnicu spojitosti písať aj v tvare S . v = konšt. S1 . v1 = S2 . v2

W = F . Δ x = = p.S.Δ x = = p.ΔV Tlaková energia Voda pod tlakom môže konať prácu, má energiu, ktorú nazývame tlaková energia. Keď sa piest pôsobením tlakovej sily kvapaliny F = p . S posunie o dĺžku x, vykoná prácu W = F . Δ x = = p.S.Δ x = = p.ΔV

Vykonaná práca je určená súčinom tlaku a zmeny objemu kvapaliny v tlakovej trubici. Z uvedeného vzťahu pre tlak kvapaliny vyplýva p = W : Δ V platí [p] = 1 Pa = J . m-3 Číselná hodnota tlaku kvapaliny určuje číselnú hodnotu tlakovej energie kvapaliny pripadajúcu na jednotkový objem.

Bernoulliho rovnica a hydrodynamický paradox Vodorovnou trubicou s rôznymi prierezmi, na ktorej sú manometrické trubice, necháme prúdiť vodu. Výška vody v manometrickej trubici udáva tlak prúdiacej kvapaliny v danom mieste. Zistíme, že najväčší tlak je v tej časti trubice, ktorá má najväčší prierez, a preto podľa rovnice spojitosti voda v nej prúdi najmenšou rýchlosťou. V miestach, kde je prierez najmenší a rýchlosť prúdenia najväčšia, zistíme najmenší tlak. Celková energia prúdiacej kvapaliny daná súčtom tlakovej a kinetickej energie je vo všetkých miestach ( potrubia ) stála.

Pre miesta s rozličnými prierezmi vodorovnej trubice teda platí Bernoulliho rovnica vyjadruje zákon zachovania mechanickej energie prúdiacej ideálnej kvapaliny vo vodorovnej trubici. Pre plyny je táto rovnica zložitejšia, pretože zmenou tlaku mení sa aj hustota plynov.

Použitie Bernoulliho rovnice Znalosť Bernoulliho rovnice umožňuje merať veľkosť rýchlosti prúdiacej kvapaliny. Napríklad prvá manometrická trubica registruje hodnotu tlaku v prúdiacej kvapaline. V druhej manometrickej trubici, ktorá má otvor obrátený proti prúdu kvapaliny, klesne rýchlosť prúdenia na nulu, a preto meraný tlak udáva celkovú mechanickú energiu kvapaliny v jednotkovom objeme v trubici

Odtiaľ pre veľkosť rýchlosti dostaneme (p1 < p2) Podobný vzťah odvodíme pre veľkosť rýchlosti kvapaliny vytekajúcej malým otvorom, ktorý je v stene nádoby v hĺbke h pod voľným povrchom kvapaliny. Pre hladinu kvapalín v hĺbke h platí

Po dosadení do Bernoulliho rovnice dostaneme A pre veľkosť výtokovej rýchlosti platí Rýchlosť vytekajúcej kvapaliny má práve takú veľkosť, akú by získali častice kvapaliny pri voľnom páde z výšky h. Pomocou Bernoulliho rovnice môžeme vysvetliť i činnosť rozprašovača. Princíp rozprašovača je základom činnosti sprejov, karburátorov a pod.

Zdroje J. Vachek a kol. : Fyzika pre 1. ročník gymnázií, SPN, Bratislava, 2001