Χειμερινό εξάμηνο 2017 Τέταρτη διάλεξη

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ψηφιακά Κυκλώματα.
Advertisements

Συνδυαστικα κυκλωματα με MSI και LSI
Τομέας Αρχιτεκτονικής Η/Υ & Βιομηχανικών Εφαρμογών
Δρ. ΚΩΝΣΤΑΝΤΙΝΟΣ ΠΙΤΡΗΣ
13.1 Λογικές πύλες AND, OR, NOT, NAND, NOR
HY 120 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Ασυγχρονα ακολουθιακα κυκλωματα 2o μερος.
Συνδιαστικά Λογικά Κυκλώματα
ΗΥ220 Εργαστήριο Ψηφιακών Κυκλωμάτων
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΥ120 "ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ" ΙCs.
Πολυσύνθετες πύλες NMOS και CMOS
Άλγεβρα Boole και Λογικές Πύλες
2. Άλγεβρα Boole και Λογικές Πύλες
3. Απλοποίηση Συναρτήσεων Boole
HY 120 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Ασυγχρονα ακολουθιακα κυκλωματα.
4. Συνδυαστική Λογική 4.1 Εισαγωγή
Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών
ΕΝΟΤΗΤΑ 11 Η ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΟΙ ΛΟΓΙΚΟΙ ΠΙΝΑΚΕΣ (PROGRAMMABLE LOGIC ARRAYS)  Οι λογικοί Πίνακες ως γεννήτριες συναρτήσεων  Επίπεδα AND-OR και OR-AND.
ΗΥ120 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Συναρτησεις Boole.
Συνδυαστικά Κυκλώματα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
HY 120 "ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ" Programming Logic Devices (PLDs) (Συσκευες Προγραμματιζομενης Λογικης)
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009
ΗΜΥ 100: Εισαγωγή στην Τεχνολογία Διάλεξη 17 Εισαγωγή στα Ψηφιακά Συστήματα: Μέρος Γ TΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ.
ΠΑΡΑΔΟΣΕΙΣ ΜΑΘΗΜΑΤΟΣ «ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΕΣ 1» ΕΙΣΑΓΩΓΗ ΟΚΤΩΒΡΙΟΣ 2005.
Οι λογικές πράξεις και οι λογικές πύλες
Λογικές πύλες Λογικές συναρτήσεις
Υλοποίηση λογικών πυλών με τρανζίστορ MOS
Εξομοιωτής Ψηφιακών Κυκλωμάτων
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
1-1 Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Διδάσκων: Γιώργος Σταμούλης.
Ψηφιακή Σχεδίαση Εργαστήριο Τετάρτη 14/10/2015. Μέρος 1ο Ελαχιστόροι-Μεγιστόροι.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 8: Ολοκληρωμένα κυκλώματα – Συνδυαστική λογική – Πολυπλέκτες – Κωδικοποιητές - Αποκωδικοποιητές Δρ Κώστας Χαϊκάλης ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
Ψηφιακή Σχεδίαση Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής.
ΑΞΙΩΜΑΤΑ ΤΗΣ ΑΛΓΕΒΡΑΣ BOOLE (αξιώματα Huntington) 1. Κλειστότητα α. ως προς την πράξη + (OR) β. ως προς την πράξη  (AND) 2. Ουδέτερα.
Τέταρτο μάθημα Ψηφιακά Ηλεκτρονικά.
Έβδομο μάθημα Ψηφιακά Ηλεκτρονικά.
Τρίτο μάθημα Ψηφιακά Ηλεκτρονικά.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 4: Απλοποίηση (βελτιστοποίηση) λογικών συναρτήσεων με την μέθοδο του χάρτη Karnaugh (1ο μέρος) και υλοποίηση με πύλες NAND -
Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής
Ένατο μάθημα Ψηφιακά Ηλεκτρονικά.
Όγδοο μάθημα Ψηφιακά Ηλεκτρονικά.
Δυαδική λογική ΚΑΙ (AND) H (ΟR) ΟΧΙ (NOT)
Σχεδίαση CMOS Ψηφιακών Ολοκληρωμένων Κυκλωμάτων
Έκτο μάθημα Ψηφιακά Ηλεκτρονικά.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 5: Απλοποίηση (βελτιστοποίηση) λογικών συναρτήσεων με την μέθοδο του χάρτη Karnaugh (2ο μέρος) Δρ Κώστας Χαϊκάλης ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ.
Ψηφιακή Σχεδίαση Εργαστήριο Τετάρτη 9/12/2015.
Διάλεξη 11: Ανάλυση ακολουθιακών κυκλωμάτων Δρ Κώστας Χαϊκάλης
Διάλεξη 9: Συνδυαστική λογική - Ασκήσεις Δρ Κώστας Χαϊκάλης
Εισαγωγή στους Η/Υ Ενότητα 11: Αλγεβρικές πράξεις στους Η/Υ
Ψηφιακή Σχεδίαση Εργαστήριο Τετάρτη 14/10/2015.
“Ψηφιακός έλεγχος και μέτρηση της στάθμης υγρού σε δεξαμενή"
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 7: Βελτιστοποίηση-ελαχιστοποίηση λογικών συναρτήσεων με χάρτη Karnaugh - Ασκήσεις Δρ Κώστας Χαϊκάλης ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ.
Διάλεξη 3: Αλγεβρα Boole - Ασκήσεις Δρ Κώστας Χαϊκάλης
Χειμερινό εξάμηνο 2017 Πέμπτη διάλεξη
Λογικές πύλες και υλοποίηση άλγεβρας Boole ΑΡΒΑΝΙΤΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ(ΣΥΝΕΡΓΑΤΕΣ):ΔΗΜΗΤΡΙΟΣ ΔΑΒΟΣ- ΜΑΡΙΑ ΕΙΡΗΝΗ KAΛΙΑΤΣΗ-ΦΡΑΤΖΕΣΚΟΣ ΒΟΛΤΕΡΙΝΟΣ… ΕΠΠΑΙΚ ΑΡΓΟΥΣ.
Ψηφιακή Σχεδίαση εργαστήριο
Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής
Λογική Σχεδίαση Ψηφιακών Συστημάτων
Математичка логика Основни појмови, дефиниција исказа, основне логичке операције над исказима.
Εργασίες 9ου – 10ου Εργαστηρίου
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο 2005
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο 2005
Εργαστήριο Ψηφιακών Ηλεκτρονικών
Υλοποιήσεις λογικών συναρτήσεων
Μεταγράφημα παρουσίασης:

Χειμερινό εξάμηνο 2017 Τέταρτη διάλεξη Ψηφιακά Ηλεκτρονικά Χειμερινό εξάμηνο 2017 Τέταρτη διάλεξη

ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ Οι πύλες NAND και NOR ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί μόνο με πύλες NAND ή μόνο με πύλες NOR.

ΣΧΕΔΙΑΣΗ ΣΥΝΔΥΑΣΤΙΚΩΝ ΚΥΚΩΜΑΤΩΝ ΜΕ ΠΥΛΕΣ NAND/NOR Αν θέλουμε να σχεδιάσουμε και να κατασκευάσουμε ένα κύκλωμα με οικουμενικές πύλες NAND ή NOR δυο εισόδων, μπορούμε να το σχεδιάσουμε πρώτα με πύλες NOT, AND και OR και στη συνέχεια να αντικαταστήσουμε την κάθε πύλη με το ισοδύναμο κύκλωμα. Αν στο κύκλωμα υπάρχουν δυο διαδοχικές πύλες NAND ή NOR που αντιστοιχούν σε πύλες ΝΟΤ, τότε οι δυο διαδοχικές πύλες διαγράφονται και το κύκλωμα απλοποιείται.

ΟΙΚΟΥΜΕΝΙΚΗ ΠΥΛΗ NAND Κάθε πύλη NOT και AND και OR δυο εισόδων μπορεί να αντικατασταθεί από ένα ισοδύναμο κύκλωμα με αποκλειστική χρησιμοποίηση πυλών NAND δυο εισόδων. Στο παρακάτω σχήμα βλέπουμε τα κυκλώματα που είναι ισοδύναμα με τις βασικές πύλες NOT, AND και OR, χρησιμοποιώντας μόνο πύλες ΝΑND

ΠΑΡΑΔΕΙΓΜΑ ΣΧΕΔΙΑΣΗΣ ΚΥΚΩΜΑΤΟΣ ΜΕ ΠΥΛΕΣ NAND Θέλουμε να σχεδιάσουμε με οικουμενικές πύλες NAND δυο εισόδων το συνδυαστικό κύκλωμα που υλοποιεί τη λογική συνάρτηση: Z=A’B+C Σχεδιάζουμε στην αρχή το κύκλωμα με πύλες NOT, AND και OR:

ΠΑΡΑΔΕΙΓΜΑ ΣΧΕΔΙΑΣΗΣ ΚΥΚΩΜΑΤΟΣ ΜΕ ΠΥΛΕΣ NAND

Υλοποίηση με NAND

Υλοποίηση με NAND

Υλοποίηση δύο επιπέδων με NAND

Υλοποίηση δύο επιπέδων με NAND Όταν δίνεται μια συνάρτηση Boole σε αλγεβρική μορφή: Απλοποιούμε τη συνάρτηση και την εκφράζουμε ως άθροισμα γινομένων Σχεδιάζουμε μία πύλη NAND για κάθε όρο γινομένου της συνάρτησης που έχει τουλάχιστον δύο παράγοντες. Οι είσοδοι κάθε πύλης NAND είναι παράγοντες του αντίστοιχου όρου. Αυτές είναι οι πύλες του πρώτου επιπέδου. Σχεδιάζουμε μία πύλη NAND στο δεύτερο επίπεδο, χρησιμοποιώντας γραφικό σύμβολο είτε AND-αντιστροφής είτε αντιστροφής-OR, με εισόδους που τροφοδοτούνται από τις εξόδους του πρώτου επιπέδου. Ένας όρος με έναν μόνο παράγοντα χρειάζεται μόνο έναν αντιστροφέα στο πρώτο επίπεδο για να τροφοδοτήσει την πύλη του 2ου επιπέδου.

Υλοποίηση πολλών επιπέδων με NAND Η γενική διαδικασία μετατροπής ενός διαγράμματος πολλών επιπέδων AND-OR σε διάγραμμα μόνο με πύλες NAND είναι η εξής Για τη συνάρτηση Boole F=A(CD+B)+BC'

Υλοποίηση πολλών επιπέδων με NAND Για τη συνάρτηση Boole F=(AB'+A'B)(C+D')

ΟΙΚΟΥΜΕΝΙΚΗ ΠΥΛΗ NOR Κάθε πύλη NOT και AND και OR δυο εισόδων μπορεί να αντικατασταθεί από ένα ισοδύναμο κύκλωμα με αποκλειστική χρησιμοποίηση πυλών NOR. Στο παρακάτω σχήμα βλέπουμε τα κυκλώματα που είναι ισοδύναμα με τις βασικές πύλες NOT, AND και OR, πύλες NOR.

Υλοποίηση με NOR