Φυσική για Μηχανικούς Ενέργεια Συστήματος

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ειδικότερα ζητήματα Πρόσβασης τρίτου
Advertisements

ΜΑΚΙΓΙΑΖ.
ΨΥΧΟΠΑΙΔΑΓΩΓΙΚΟ ΥΛΙΚΟ ΒΡΕΦΟΝΗΠΙΑΚΟΥ ΣΤΑΘΜΟΥ
Nacionalno računovodstvo
KVANTITATIVNE METODE U GRAĐEVINSKOM MENADŽMENTU
«Ο ΔΗΜΟΤΙΚΟΣ ΚΗΠΟΣ ΤΟΥ ΤΑΞΙΜΙΟΥ»
2. VAJA – sile ob dotiku in na daljavo
RADAR ZA PLOVILO ESMO Laboratorij za Sevanje in Optiko
תנועה הרמונית מטוטלת – חלק ב'.
Pasiruošimas “Elektros” skyriaus laboratoriniams darbams
הסקה על פרופורציה באוכלוסייה
ΧΡΗΣΤΟΓΛΟΥ ΙΩΑΝΝΗΣ ΓΕΝ
Κοινωνία, παραβατικές συμπεριφορές, πολιτική καταστολή
ΚΟΙΝΩΝΙΚΗ ΚΑΙ ΑΛΛΗΛΕΓΓΥΑ ΟΙΚΟΝΟΜΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΤΩΝ ΦΟΡΕΩΝ ΤΗΣ
ΔΙΑΤΑΡΑΧΕΣ ΟΞΕΟΒΑΣΙΚΗΣ ΙΣΟΡΡΟΠΙΑΣ
Επανάληψη.
ΑΝΑΛΥΤΙΚΗ ΧΗΜΕΙΑ Εισαγωγή.
ΑΡΙΘΜΟΔΕΙΚΤΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ
Διαχείριση Κινδύνου* *Η σειρά παρουσιάσεων για το μάθημα «Διαχείριση Κινδύνου» βασίζεται στο σύγγραμμα των Σχοινιωτάκη, Ν., και Συλλιγάρδου Γ., «Διαχείριση.
ΣΑΕ ΙΙ – ΥΔΡΑΥΛΙΚΑ & ΠΝΕΥΜΑΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Εργασία στο μάθημα της Βιολογίας της Ά λυκείου του μαθητή Γεώργιου Μ.
Κεφάλαιο 6 οι φίλοι μας, οι φίλες μας
ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ (Κ105)
Επαγγέλματα στο Βυζάντιο
Μορφές & Διαδικασίες Αξιολόγησης
ΗΛΕΚΤΡΟΜΥΟΓΡΑΦΗΜΑ.
Εισαγωγή στη Ρομποτική
Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Κάνε κλικ σε κάθε λέξη για να δεις τη σημασία
Μεσαιωνικό Κάστρο Λεμεσού
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑ 5Ο ΚΕΦ.
ΑΣΚΗΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ ΤΗΣ ΓΛΩΣΣΑΣ
Δρ. ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΓΕΩΡΓΙΟΣ
Καδράκι ‘‘Ο Χριστός σώζει τον Πέτρο από τον καταποντισμό στα κύματα’’
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 Mέγεθος πυρήνα Κώστας.
Η προβληματική των γενικών σκοπών και των ειδικών στόχων:
Σχεδιασμός και Οργάνωση του μαθήματος
Διαφορές και Ομοιότητες Κερδοσκοπικών και Μη Κερδοσκοπικών Οργανισμών
Put Options.
Χονδρός Παναγιώτης Σοφού Ειρήνη Μυρογιάννη Χρύσα Καλαϊτζή Κατερίνα
Εισηγητής: Ιωάννης Χρήστογλου Γεν. Διευθυντής Δ.Ε.Υ.Α. Κατερίνης
Καλαματα Η ιστορία της.
Ψηφιακές Επικοινωνίες Ι
Ψηφιακές Τηλεπικοινωνιές
Αθανάσιος Κ. Ρισβάς.
Η Γαλλική Επανάσταση.
ΠΥΡΟΣΒΕΣΤΙΚΟ ΣΩΜΑ.
Η ΤΕΧΝΗ ΣΤΗΝ ΑΡΧΑΪΚΗ ΕΠΟΧΗ
Απέκκριση Οι δυο κύριες οδοί απομάκρυνσης των φαρμάκων από τον οργανισμό, είναι αφ ενός ο μεταβολισμός τους στο ήπαρ, που μόλις εξετάσαμε, και αφ ετέρου.
ΜΥΕ003-ΠΛΕ70: Ανάκτηση Πληροφορίας
Τα πολιτικά κόμματα Ορισμός: α) η κατάκτηση της πολιτικής εξουσίας, β) μόνιμη οργάνωση σε όλη την επικράτεια, γ) λαϊκή στήριξη Λειτουργίες: -α) ενοποίηση-εναρμονισμός.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Μύκητας Κεφίρ και Σπόροι Κεφίρ είναι το ίδιο πράγμα.
ΗΜΕΡΟΛΟΓΙΟ.
Το παιδί που πεθαίνει.
ΤΟ ΜΑΓΝΗΤΙΚΟ ΠΕΔΙΟ ΜΕΣΑ ΣΤΗΝ ΥΛΗ
Οργανική Χημεία Ενότητα 1: Χημεία του Άνθρακα Χριστίνα Φούντζουλα
Πεντηκονταετία π.Χ..
Ψηφιακές Τηλεπικοινωνιές
Σύντομη Παρουσίαση Τόμος 2. Κεφάλαιο 2 «Στοιχεία Επικοινωνίας»
Αρχαία Ολυμπία Μυρσίνη Μαλίογκα Ε΄
3.
Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής
ΕΛΕΥΘΕΡΟΣ ΧΡΟΝΟΣ.
Μερκ. Παναγιωτόπουλος - Φυσικός
ΑΘΛΗΤΙΣΜΟΣ ΚΑΙ ΜΥΙΚΟ ΣΥΣΤΗΜΑ
ΤΟ ΦΩΣ ΩΣ ΑΥΤΟΝΟΜΗ ΦΥΣΙΚΗ ΟΝΤΟΤΗΤΑ
Μάθημα: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ
Εισαγωγή στη Διοικητική Λογιστική
Μεταγράφημα παρουσίασης:

Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί να δημιουργηθεί ή να καταστραφεί. Η "ικανότητα ενός συστήματος να παράγει έργο" είναι μια κοινή περιγραφή, αλλά είναι δύσκολο να δοθεί ένας ενιαίος συνολικός ορισμός της ενέργειας, εξαιτίας των πολλών μορφών της.

Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί να δημιουργηθεί ή να καταστραφεί. Η "ικανότητα ενός συστήματος να παράγει έργο" είναι μια κοινή περιγραφή, αλλά είναι δύσκολο να δοθεί ένας ενιαίος συνολικός ορισμός της ενέργειας, εξαιτίας των πολλών μορφών της.

Διατήρηση της Ενέργειας Παράδειγμα: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Α) Βρείτε την ταχύτητα του σώματος όταν αυτό μετατοπιστεί κατά 3 m, εάν η επιφάνεια επαφής έχει συντελεστή τριβής ολίσθησης 0.15 Β) Αν η δύναμη ασκείται υπό γωνία θ, ποια θα είναι αυτή η γωνία ώστε η ταχύτητα του σώματος μετά από 3 m να είναι η μέγιστη;

Διατήρηση της Ενέργειας Παράδειγμα - Λύση: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Α) Βρείτε την ταχύτητα του σώματος όταν αυτό μετατοπιστεί κατά 3 m, εάν η επιφάνεια επαφής έχει συντελεστή τριβής ολίσθησης 0.15

Διατήρηση της Ενέργειας Παράδειγμα - Λύση: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Β) Αν η δύναμη ασκείται υπό γωνία θ, ποια θα είναι αυτή η γωνία ώστε η ταχύτητα του σώματος μετά από 3 m να είναι η μέγιστη;

Διατήρηση της Ενέργειας Παράδειγμα - Λύση: Ένα σώμα μάζας 6 kg σε αρχική ηρεμία κινείται προς τα δεξιά επάνω σε μια οριζόντια επιφάνεια λόγω σταθερής οριζόντιας δύναμης 12 Ν. Β) Αν η δύναμη ασκείται υπό γωνία θ, ποια θα είναι αυτή η γωνία ώστε η ταχύτητα του σώματος μετά από 3 m να είναι η μέγιστη;

Διατήρηση της Ενέργειας Αν μια μη-συντηρητική δύναμη δρα σε ένα απομονωμένο σύστημα, τότε 𝚫𝐊+𝚫𝐔+𝚫 𝑬 𝒊𝒏𝒕 =𝟎 𝚫 𝑬 𝒎𝒆𝒄𝒉 =−𝚫 𝑬 𝒊𝒏𝒕 Για ένα μη-απομονωμένο σύστημα, 𝑾 𝒐𝒕𝒉𝒆𝒓 𝒇𝒐𝒓𝒄𝒆𝒔 =𝑾=𝚫𝐊+𝚫𝐔+𝚫 𝑬 𝒊𝒏𝒕

Διατήρηση της Ενέργειας Παράδειγμα: Δυο σώματα είναι συνδεδεμένα με αβαρές και ανελαστικό σχοινί που περνά από τροχαλία χωρίς τριβές. Το σώμα μάζας 𝑚 1 βρίσκεται σε οριζόντια επιφάνεια με τριβές και συνδέεται με ελατήριο σταθεράς k. Το σύστημα θεωρείται αρχικά σε ηρεμία. Αν το σώμα μάζας 𝑚 2 πέφτει κατά απόσταση h πριν έρθει σε ηρεμία, υπολογίστε το συντελεστή τριβής ολίσθησης ανάμεσα στο σώμα μάζας 𝑚 1 και της επιφάνειας.

Διατήρηση της Ενέργειας Παράδειγμα – Λύση: σώμα μάζας 𝑚 1 σε οριζόντια επιφάνεια με τριβές και συνδέεται με ελατήριο, το σύστημα θεωρείται αρχικά σε ηρεμία, σώμα μάζας 𝑚 2 πέφτει κατά απόσταση h πριν έρθει σε ηρεμία, υπολογίστε το συντελεστή τριβής ολίσθησης ανάμεσα στο σώμα μάζας 𝑚 1 και της επιφάνειας.

Διατήρηση της Ενέργειας Παράδειγμα: Αναγνωρίστε τη διάταξη του προηγούμενου συστήματος που ανταποκρίνεται σε κάθε γράφημα ενέργειας

Διατήρηση της Ενέργειας Γνωρίζουμε ότι έργο == μεταφορά ενέργειας Ερώτημα: Πόσο γρήγορα μεταφέρεται η ενέργεια? Αν θέλετε να αγοράσετε έναν κινητήρα για να κινεί ένα ασανσέρ μάζας 1500 kg για 5 ορόφους, έχει μεγάλη σημασία αν ο κινητήρας το κάνει σε 30 s ή σε 30 min!  Το «πόσο γρήγορα» υποδηλώνει ένα ρυθμό Ρυθμό μεταφοράς ενέργειας == ισχύς 𝑷 (Power) 𝑃= 𝑑𝐸 𝑑𝑡 Μονάδα μέτρησης: 1 Watt = 1 J/s

Διατήρηση της Ενέργειας Εναλλακτικά, η ισχύς μπορεί να ιδωθεί ως ο ρυθμός παραγωγής έργου Μέση ισχύς 𝑃 𝑎𝑣𝑔 = 𝑊 Δ𝑡 Στιγμιαία ισχύς 𝑃= lim Δt→0 𝑃 𝑎𝑣𝑔 = 𝑑𝑊 𝑑𝑡 = 𝐹 ∙ 𝑑 𝑟 𝑑𝑡 = 𝐹 ∙ 𝑣

Διατήρηση της Ενέργειας Παράδειγμα: Ένας ανελκυστήρας έχει μάζα 1600 kg και μεταφέρει επιβάτες με συνολική μάζα 200 kg. Μια σταθερή δύναμη τριβής 4000 N αντιστέκεται στην κίνηση του ανελκυστήρα προς τα πάνω. Α) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας του ασανσέρ για να σηκώσει το ασανσέρ και τους επιβάτες του με σταθερή ταχύτητα u = 3 m/s? B) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας τη στιγμή που ο ανελκυστήρας έχει ταχύτητα u, αν επιταχύνει τον ανελκυστήρα με σταθερή επιτάχυνση a = 1 m/s2 προς τα πάνω?

Διατήρηση της Ενέργειας Παράδειγμα – Λύση: Ένας ανελκυστήρας έχει μάζα 1600 kg και μεταφέρει επιβάτες με συνολική μάζα 200 kg. Μια σταθερή δύναμη τριβής 4000 N αντιστέκεται στην κίνηση του ανελκυστήρα προς τα πάνω. Α) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας του ασανσέρ για να σηκώσει το ασανσέρ και τους επιβάτες του με σταθερή ταχύτητα u = 3 m/s?

Διατήρηση της Ενέργειας Παράδειγμα – Λύση: Ένας ανελκυστήρας έχει μάζα 1600 kg και μεταφέρει επιβάτες με συνολική μάζα 200 kg. Μια σταθερή δύναμη τριβής 4000 N αντιστέκεται στην κίνηση του ανελκυστήρα προς τα πάνω. B) Πόση ισχύ πρέπει να παραδώσει ο κινητήρας τη στιγμή που έχει ταχύτητα u, αν επιταχύνει τον ανελκυστήρα με σταθερή επιτάχυνση α = 1 m/s2 προς τα πάνω?

Απλή Αρμονική Ταλάντωση Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται από το σημείο που πέφτουν οι σταγόνες.

Απλή Αρμονική Ταλάντωση Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά κύματα που απομακρύνονται από το σημείο που πέφτουν οι σταγόνες.

Απλή Αρμονική Ταλάντωση Περιοδική κίνηση: ονομάζεται η κίνηση ενός σώματος που επιστρέφει σε μια αρχική θέση ανά τακτά σταθερά χρονικά διαστήματα Πολλά παραδείγματα από την καθημερινότητα Δείκτες ρολογιού Ανατολή-Δύση Ηλίου Διαλέξεις Φυσικής  Τροχιά δορυφόρου γύρω από τη Γη Μαθηματικός ορισμός: 𝑓 𝑡 =𝑓 𝑡+𝑇 , 𝛵>0, ∀ 𝑡>0

Απλή Αρμονική Ταλάντωση Απλή αρμονική κίνηση: περιοδική κίνηση που συμβαίνει συχνά σε μηχανικά συστήματα, όταν η δύναμη είναι ανάλογη της θέσης του σώματος, σε σχέση με μια θέση ισορροπίας Ορισμός: Όταν η δύναμη που ασκείται σε ένα σώμα έχει πάντα κατεύθυνση προς τη θέση ισορροπίας του σώματος, η κίνηση λέγεται Απλή Αρμονική Κίνηση Γνωρίζετε ήδη μια τέτοια κίνηση (ποια;) 

Απλή Αρμονική Ταλάντωση

Απλή Αρμονική Ταλάντωση Σώμα σε κίνηση 𝐹 𝑥 =𝑚 𝑎 𝑥 ↔−𝑘𝑥=𝑚 𝑎 𝑥 ↔ 𝑎 𝑥 =− 𝑘 𝑚 𝑥 Η επιτάχυνση είναι ανάλογη της θέσης Η κατεύθυνσή της είναι αντίθετη της μετατόπισης από τη θέση ισορροπίας Απλή Αρμονική Κίνηση

Απλή Αρμονική Ταλάντωση Εξισώσεις απλής αρμονικής ταλάντωσης 𝑎 𝑥 =− 𝑘 𝑚 𝑥↔ 𝑑 2 𝑥 𝑑𝑡 2 =− 𝑘 𝑚 𝑥 Αν θέσουμε 𝜔 2 = 𝑘 𝑚 , τότε έχουμε 𝑑 2 𝑥 𝑑𝑡 2 =− 𝜔 2 𝑥 Λύση διαφορικής εξίσωσης 𝑥 𝑡 =𝐴 cos (𝜔𝑡+𝜑) Φάση μετατόπισης ή σταθερά φάσης Φάση Πλάτος ταλάντωσης Συχνότητα ταλάντωσης

Απλή Αρμονική Ταλάντωση Συχνότητα ταλάντωσης 𝜔= 𝑘 𝑚 Ονομάζεται γωνιακή συχνότητα Μετριέται σε rad/s Ορίζει πόσο συχνά ταλαντώνεται το σώμα Σταθερά φάσης 𝜑 Ορίζει την τιμή του συνημιτόνου τη στιγμή 𝑡=0 𝑡=0⇒x 0 = Acos 0+𝜑 =Αcos(φ) Η τιμή 𝑡 0 =− 𝜑 𝜔 ορίζει τη χρονική μετατόπιση σε δευτερόλεπτα του 𝑥 𝑡 από τη θέση 𝑡=0 𝑥 𝑡 =𝐴 cos (𝜔𝑡+𝜑) =𝐴 cos (𝜔 𝑡+ 𝜑 𝜔 ) =𝐴 cos (𝜔 𝑡+ 𝑡 0 )

Απλή Αρμονική Ταλάντωση Περίοδος 𝑇= 2𝜋 𝜔 =2𝜋 𝑚 𝑘 Συχνότητα (σε Hertz) 𝑓= 1 𝑇 = 𝜔 2𝜋 = 1 2𝜋 𝑘 𝑚 Σχέση με γωνιακή συχνότητα 𝜔=2𝜋𝑓= 2𝜋 Τ

Απλή Αρμονική Ταλάντωση Ταχύτητα & επιτάχυνση απλής αρμονικής κίνησης 𝑢= 𝑑𝑥 𝑑𝑡 =−𝜔𝐴 sin 𝜔𝑡+𝜑 𝑎= 𝑑 2 𝑥 𝑑 𝑡 2 =− 𝜔 2 𝐴 cos⁡(𝜔𝑡+𝜑) Μέγιστες τιμές 𝑢 𝑚𝑎𝑥 =𝜔𝐴= 𝑘 𝑚 𝐴 𝑎 𝑚𝑎𝑥 = 𝜔 2 𝐴= 𝑘 𝑚 𝐴

Απλή Αρμονική Ταλάντωση Πώς βρίσκουμε τις σταθερές 𝑨, 𝝋, της ταλάντωσης; Συχνότητα: εξαρτάται από k, m Πλάτος, φάση: αρχικές συνθήκες! (𝑡=0) Παράδειγμα 1: 𝑥 0 =𝐴 cos 𝜑 =𝐴, 𝑢 0 =−𝜔𝐴 sin 𝜑 =0 Δίνουν 𝜑=0 𝑥(𝑡)=𝐴cos⁡ 𝜔𝑡 Παράδειγμα 2: 𝑥 0 =𝐴 cos 𝜑 =0, 𝑢 0 =−𝜔𝐴 sin 𝜑 = 𝑢 𝑖 Δίνουν 𝜑=− 𝜋 2 𝑥(𝑡)= 𝑢 𝑖 𝜔 cos⁡ 𝜔𝑡− 𝜋 2

Απλή Αρμονική Ταλάντωση Θέση, ταχύτητα, επιτάχυνση για (a) 𝑡=0,𝑥 0 =𝐴,𝑢 0 =0 και (b) 𝑡=0,𝑥 0 =0,𝑢 0 = 𝑢 𝑖

Τέλος Διάλεξης