Version 2016-07-25.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Σεμινάριο εκπαίδευσης καταμετρητών IMS Αθήνα 2009
Advertisements

ΜΟΝΑΔΕΣ ΚΑΙ ΥΠΟΔΙΑΙΡΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ: Πουλιόπουλος Πούλιος.
Ο Άνθρωπος είναι ένα ον το οποίο φτιάχνει πολιτισμό και έχει βαθύ στοχασμό, συναισθήματα και σεβασμό στη ζωή των άλλων. Ορισμός.
Η ΜΕΛΕΤΗ ΤΗΣ ΚΥΠΡΟΥ ΑΠΟ ΑΡΧΑΙΟΤΑΤΩΝ ΧΡΟΝΩΝ ΜΕΧΡΙ ΣΗΜΕΡΑ.
1 Διαχείριση Έργων Πληροφορικής Διάλεξη 8 η Διαχείριση Κόστους.
Τα γενεσιουργά αίτια των ψυχικών διαταραχών Αθανάσιος Κανάκης Υπαστυνόμος Α΄ (ΥΓ) Ψυχολόγος Κ.Ι.Θ.
ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Κεφάλαιο 2 Στοιχεία της Ασαφούς Λογικής Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών.
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ  Βασικές Έννοιες  Ψηφιοποίηση Συνεχών Σημάτων  Δειγματοληψία  Θεώρημα Nyquist  Κβαντισμός  Κωδικοποίηση  Παραδείγματα.
Αισθητήρια Όργανα και Αισθήσεις 1.  Σύστημα αισθητηρίων οργάνων: αντίληψη μεταβολών εξωτερικού & εσωτερικού περιβάλλοντος  Ειδικά κύτταρα – υποδοχείς.
Ενότητα 1 1 Πρότυπο κόστος. Τι είναι: –Πολύ σωστά και πολύ λεπτομερειακά υπολογισμένο προϋπολογιστικό κόστος Τι εκφράζει: –Στόχους που θα πρέπει να επιτευχθούν.
5. Δικαστική προστασία στην ΕΕ. Σημασία και κατανομή αρμοδιοτήτων Σημασία δικαστικής επίλυσης διακρατικών διαφορών (Διαφορές και πόλεμοι, β παγκόσμιος.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
ΕΙΚΟΝΙΚΗ ΠΡΑΓΜΑΤΙΚΟΤΗΤΑ ΝΕΑ ΔΕΔΟΜΕΝΑ ΣΤΟ ΣΥΓΧΡΟΝΟ ΜΟΥΣΕΙΑΚΟ ΧΩΡΟ ΦΟΙΤΗΤΡΙΑ: ΜΕΛΙΣΗ ΣΤΥΛΙΑΝΗ.
ΘΕΑΤΡΟΠΑΙΔΑΓΩΓΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΕ ΣΥΝΕΡΓΑΣΙΑ ΜΕ ΤΟ ΣΥΛΛΟΓΟ ΑΜΕΑ ΑΡΓΟΛΙΔΑΣ.
ΑΡΧΙΚΗ ΑΞΙΟΛΟΓΗΣΗ ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΚΟΠΗΣ
ΤΡΟΠΟΣ ΖΩΗΣ ΚΑΙ ΚΑΡΔΙΑΓΓΕΙΑΚΑ ΝΟΣΗΜΑΤΑ
Μοριακές αλληλεπιδράσεις
Διαστήματα Εμπιστοσύνης α) για τη μέση τιμή β) για ένα ποσοστό
Αισθητήρια όργανα – αισθήσεις
ΔΙΠΛΟΘΛΑΣΤΙΚΟΤΗΤΑ.
Περιεχόμενα Εισαγωγή Είδη κίνησης Αρχή λειτουργίας μηχανισμών
ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΜΗΧΑΝΟΛΟΓΙΑΣ ΤΕΧΝΙΚΩΝ ΜΕΤΡΗΣΕΩΝ ΜΕΤΡΗΤΙΚΟ ΟΡΓΑΝΟ : ΑΝΕΜΟΜΕΤΡΟ ΕΠΩΝΥΜΟ : ΚΟΦΙΝΑΣ ΟΝΟΜΑ : ΠΑΝΑΓΙΩΤΗΣ ΑΡ. ΜΗΤΡΩΟΥ : 561 1/12/2017 Κοφινάς.
ΗΛΕΚΤΡΟΝΙΚΗ ΜΙΚΡΟΣΚΟΠΙΑ
Το φάσμα του λευκού φωτός
ΠΑΡΟΥΣΙΑΣΕΙΣ ΜΑΘΗΜΑΤΟΣ ΠΙΘΑΝΟΤΗΤΕΣ(6)
Προσδιορισμός σημείου
Σχεδιασμός των Μεταφορών
Συγχώνευση.
ΚΥΚΛΟΦΟΡΙΚΟ ΣΥΣΤΗΜΑ.
ΗΛΕΚΤΡΟΛΟΓΙΚΑ ΣΥΜΒΟΛΑ
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΑΕΠΠ
Μαθηματικά Β΄ Γυμνασίου
Συνέντευξη με μια ομάδα μαθητών
Προασκήσεις για στροφές και εκκινήσεις
Αναλυτικό Πρόγραμμα Σπουδών
Δείκτες Ποιότητας Λειτουργίας
Καταστατική εξίσωση των ιδανικών αερίων
Αρχές επαγωγικής στατιστικής
ΟΛΟΚΛΗΡΩΜΕΝΗ ΠΡΟΣΕΓΓΙΣΗ ΣΤΗΝ ΕΔΑΦΙΚΗ ΑΝΑΠΤΥΞΗ, ΣΕΣ
Πείθουμε τους εαυτούς μας ότι η ζωή μας θα είναι καλύτερη όταν θα παντρευτούμε, θα αποκτήσουμε ένα μωρό, μετά ένα ακόμα. Μετά αγχωνόμαστε διότι τα παιδιά.
“ ADRENAL INCIDENTALOMAS” «ΤΥΧΑΙΩΜΑΤΑ ΕΠΙΝΕΦΡΙΔΙΩΝ»
Η ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΤΩΝ ΦΟΙΤΗΤΩΝ ΤΟΥ ΜΑΘΗΜΑΤΙΚΟΥ ΣΤΑ ΣΧΟΛΕΙΑ: ΜΙΑ ΠΙΛΟΤΙΚΗ ΕΦΑΡΜΟΓΗ Εαρινό εξάμηνο
Φασματοσκόπιο Κωδ.F/9 Τεχνικά χαρακτηριστικά.
الاهتزازات والموجــات
Γαριπίδης Ιορδάνης Βιολόγος 3ο ΓΕΛ Χαϊδαρίου
Find: angle of failure, α
ΕΠΙΜΗΚΥΝΣΗ (χρήση αντισταθμιστή)
الكيناتيكا الدورانية المفاهيم المستخدمة في الحديث عن مسببات الحركة الدورانية لها علاقة كبيرة بمفاهيم مسببات الحركة الخطية.
Hybrid Airships The road not needed
العنوان الحركة على خط مستقيم
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: σ’v at d=30 feet in [lb/ft2]
Small angle approximation
Ευθύγραμμη Ομαλά Μεταβαλλόμενη Κίνηση
Find: Force on culvert in [lb/ft]
Ο χώρος Ποῦ; Σημείο Πόσο απέχουν;
Μάθημα [GD3021]: ΑΝΑΛΥΣΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ
Βιολόγος 3ο ΓΕΛ Χαϊδαρίου
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
Πείθουμε τους εαυτούς μας ότι η ζωή μας θα είναι καλύτερη όταν θα παντρευτούμε, θα αποκτήσουμε ένα μωρό, μετά ένα ακόμα. Μετά αγχωνόμαστε διότι τα παιδιά.
Deriving the equations of
Πείθουμε τους εαυτούς μας ότι η ζωή μας θα είναι καλύτερη όταν θα παντρευτούμε, θα αποκτήσουμε ένα μωρό, μετά ένα ακόμα. Μετά αγχωνόμαστε διότι τα παιδιά.
Find: ρc [in] from load (4 layers)
Ελληνική Ομοσπονδία Backgammon
Λογιςτικη κοςτους ΣΥΜΠΑΡΑΓΩΓΑ.
ΕΛΕΓΧΟΙ ΟΡΑΤΟΤΗΤΑΣ Επιμήκης αίθουσα με κλειστή σκηνή
ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΚΙΝΗΣΗ ΑΣΚΗΣΕΙΣ.
ΓΕΝΙΚΗ ΨΥΧΟΠΑΘΟΛΟΓΙΑ ΠΑΙΔΙΚΗΣ ΗΛΙΚΙΑΣ.
Warm Up.
Η μέθοδος της συνεισφοράς
Μεταγράφημα παρουσίασης:

Version 2016-07-25

1 in 60 Rule Με τον κανόνα αυτό υπολογίζουμε γρήγορα : Γωνίες Αποστάσεις Κλίσεις (gradients) Ρυθμό ανόδου/καθόδου (Rate of climb/descent) Ισχύει με πολύ μεγάλη ακρίβεια για γωνίες μέχρι 20 μοίρες. Εφαρμόζεται σαν μνημονικός κανόνας. Απαιτεί λίγες πράξεις.

Αν η απόσταση ΑΒ είναι 60, η γωνία θο είναι όση η απόσταση ΒΓ. Κανόνας: Αν η απόσταση ΑΒ είναι 60, η γωνία θο είναι όση η απόσταση ΒΓ. Ο κανόνας αυτός ισχύει ικανοποιητικά μέχρι τις 20 περίπου μοίρες. θ 10 A Β 60 Γ Αν η ΒΓ=10 τότε η γωνία θ είναι 10 μοίρες. Αν η ΒΓ=8 τότε η γωνία θ είναι 8 μοίρες. Π.χ

Από την θεωρία των ομοίων τριγώνων προκύπτει ότι η γωνία θ εξακολουθεί να είναι 10 μοίρες αν, για παράδειγμα, αντί των αποστάσεων ΑΒ=60 και ΒΓ=10 σχηματίσουμε ένα τρίγωνο όπως στο σχήμα, με μήκη 30 και 5 αντίστοιχα. θ 10 A Β 60 Γ Y=5 M=30 Η γενική σχέση αναγωγής στον κανόνα «1 in 60» για τον υπολογισμό της γωνίας είναι απλή:

Εφαρμογή 1η Μετά από πορεία 40nm βρισκόμαστε εκτός του επιθυμητού track κατά 6nm. Πόση γωνία απόκλιση έχουμε από το επιθυμητό track; 6 ? 40

Εφαρμογή 2η Ο αεροδιάδρομος ορίζεται από την Radial 85 του VOR. Το αεροσκάφος μας βρίσκεται στην Radial 90 και η απόσταση DME μας δείχνει 48 nm. Πόσο έξω (off) από το centerline του αεροδιαδρόμου βρισκόμαστε; R-85 off VOR/DME R-90 48nm

Εφαρμογή 3η Track error angle and closing angle calculation Μετά από πορεία περίπου 30nm βρισκόμαστε εκτός του επιθυμητού track κατά 4nm. Απομένουν άλλα περίπου 48nm μέχρι τον προορισμό μας. Πόση γωνία διόρθωσης θα πρέπει να χρησιμοποιήσουμε; Track Error Angle Closing Angle 4nm 30nm 48nm Σημείωση: Διορθώνοντας μόνο κατά 8ο ερχόμαστε παράλληλα με το επιθυμητό Track. Χρειάζεται επί πλέον διόρθωση 5ο για να επιτύχουμε την σύγκλιση προς τον προορισμό μας.

Κάθοδος – Άνοδος (μοίρες-ft-nm) Γνωρίζουμε ότι 1nm=6080ft (περίπου 6000ft) Από το σχήμα προκύπτει, σύμφωνα με τον γνωστό μας κανόνα, ότι η γωνία θ είναι 1 μοίρα. 100ft θ 6000 ft ~ 1nm Συνεπώς: αν η γωνία θ είναι 1ο τότε: απόσταση 1nm σημαίνει ύψος 100ft απόσταση 2nm σημαίνει ύψος 200ft κτλ Αντίστοιχα: Αν η γωνία θ είναι 3ο τότε: Απόσταση 1nm σημαίνει 300ft κτλ

Κάθοδος – Άνοδος Καταλήξαμε λοιπόν στο συμπέρασμα: 1ο path angle σημαίνει 100ft/nm Από αυτό το συμπέρασμα βγαίνει και ο κανόνας: Ύψος(σε ft)= path angle(o) x απόσταση(σε nm) x 100 ή Ύψος(σε Levels)= path angle(o) x απόσταση(σε nm) (Αν γνωρίζετε κάποιο αντίθετο κανόνα κάντε υπομονή και θα διευκρινιστούν όλα) Τα final approach descent angles κυμαίνονται από 2,5ο μέχρι 5,5ο και σε σπάνιες ειδικές περιπτώσεις μέχρι περίπου 6ο. Το περισσότερο συνηθισμένο και επιθυμητό final approach descent angle είναι 3ο. για να ελέγχουμε το ύψος μας και να υπολογίζουμε την κάθοδό μας με 3ο descent angle: Ύψος(σε ft)=3 x απόσταση(σε nm) x 100 Παράδειγμα: Σε 3ο descent angle το σωστό ύψος που πρέπει να βρισκόμαστε όταν είμαστε 4nm από το touchdown είναι 3x4x100 ft=1200ft Σε 5ο descent angle το σωστό ύψος για τα 4nm απόσταση είναι: 5x4x100 ft=2000ft

Διευκρίνηση: Μήπως είναι λάθος η προηγούμενη σχέση; Πιθανώς να γνωρίζουμε ένα μνημονικό κανόνα (rule of thumb) που χρησιμοποιείται για να υπολογίζουμε πότε θα πρέπει να αρχίσουμε την κάθοδο που λέει ακριβώς το ανάποδο. Δηλαδή: απόσταση(nm)=3xύψος(χιλιάδες πόδια) Και ακόμα έναν που λέει: απόσταση(nm)=3xύψος(χιλιάδες πόδια)+10 Τελικά τι είναι σωστό; Όλα ξεκαθαρίζουν στις επόμενες διαφάνειες. Προσοχή! Βλέπε επόμενη διαφάνεια.

Διευκρίνηση: Προσοχή: Η σχέση που μάθαμε είναι: Ύψος(σε Levels)= path angle(o) x απόσταση(σε nm) Ο μνημονικός κανόνας: απόσταση(σε nm)=3xύψος(σε χιλιάδες πόδια) που χρησιμοποιείται κατά κόρον, είναι ουσιαστικά το αντίθετο της σχέσης που μάθαμε και ισχύει προσεγγιστικά, μόνο για 3ο path angle. Όπως θα δούμε παρακάτω, έχει σαν αποτέλεσμα path angle κάπως μεγαλύτερo από 3ο. Πιθανώς να χρησιμοποιείται διότι απαιτεί πολλαπλασιασμό αντί διαίρεσης και γι’ αυτό να θεωρείται ευκολότερος. Ακολουθούν συγκρίσεις των δύο κανόνων.

Διευκρίνιση (Παραδείγματα) Αν για παράδειγμα θέλαμε να χάσουμε 9000ft με 3ο descent path angle, ο ένας κανόνας θα μας έδινε αποτέλεσμα 3 x 9 =27 (σε nm) που αντιστοιχεί σε path angle κάπως μεγαλύτερο από 3ο ενώ με τον κανόνα που μάθαμε θα είχαμε αποτέλεσμα 90/3=30 (σε nm) που είναι περισσότερο “συντηρητικό νούμερο” αφού δίνει path angle κάπως μικρότερo από 3ο . Στην επόμενη διαφάνεια θα ολοκληρώσουμε την σύγκριση μεταξύ των δύο αυτών κανόνων. Όσον αφορά τον άλλο μνημονικό κανόνα που λέει: απόσταση(σε nm)=3xύψος(σε χιλιάδες πόδια) +10 απλώς προστίθενται και 10 nm για μείωση ταχύτητας (deceleration).

Jeppesen Στην επόμενη διαφάνεια θα δούμε ένα πίνακα από το Airway manual της Jeppesen που δίνει ύψη και αποστάσεις για διάφορα descent angles. Στα νούμερα του ύψους έχουν προστεθεί 50 πόδια (Threshold Crossing Height) και έχουν στρογγυλοποιηθεί.

Κάθοδος – Άνοδος (μοίρες από τα ft/nm) Είδαμε ότι: Ύψος (σε levels)= path angle(o) x απόσταση(nm) Η σχέση αυτή χρησιμοποιείται και αντιστρόφως: Αν διαιρέσουμε τα levels με την απόσταση σε nm, βρίσκουμε το descent path angle σε μοίρες. Π.χ Πετάμε στo FL120 επάνω από τον σταθμό που βρίσκεται σε 30nm απόσταση και θέλουμε με συνεχή κάθοδο να φτάσουμε στο touch down. Σε πόσες μοίρες descent path angle αντιστοιχεί; Λύση: 120/30=4ο

Εφαρμογή 4η Πετάμε στα 4000ft επάνω από τον σταθμό που βρίσκεται σε 20nm απόσταση και θέλουμε με συνεχή κάθοδο να φτάσουμε στο touch down. Πόσες μοίρες descent angle θα έχει αυτή η κάθοδος; Ας θυμηθούμε τι είπαμε προηγουμένως: Αν διαιρέσουμε τα levels με την απόσταση σε μίλια, βρίσκουμε το descent path angle σε μοίρες. Συνεπώς υπολογίζουμε: 40/20=2ο

Εφαρμογή 5η Θέλουμε να χάσουμε 9000ft ύψους μέχρι το επόμενο VOR/DME που θα συναντήσουμε κρατώντας μία ομαλή κάθοδο περίπου 3Ο . Σε τι απόσταση πρέπει να αρχίσουμε την κάθοδό μας; Ύψος(ft)= descent angle(o) x 100 x απόσταση ή Ύψος(σε Levels)= descent angle(o) x απόσταση Από την παραπάνω σχέση: 9000ft=3x100xαπόσταση(nm). ή 90Levels=3xαπόσταση(nm) Υπολογίζουμε ότι: Απόσταση = 30nm

Κλίση (gradient ) & μοίρες Ύψος(ft) θ Απόσταση (ft) Μάθαμε ότι: Εξ ορισμού το ύψος δια την απόσταση εκφράζει την κλίση(gradient). Από τον συνδυασμό των δύο σχέσεων, προκύπτει η προσεγγιστική σχέση μεταξύ gradient και μοιρών: Π.χ gradient 5% ισούται με 5%x60o=3o

Εφαρμογή 6η Διαβάζουμε σε μια διαδικασία αναχώρησης ότι η αρχική άνοδος απαιτεί 360ft/nm. Πόση είναι η γωνία ανόδου που απαιτείται; Πόση είναι η gradient που απαιτείται; Θυμόμαστε ότι: 1ο path angle σημαίνει 100ft ανά nm. Συνεπώς σύμφωνα με τον κανόνα 1 in 60, τα 360ft/nm αντιστοιχούν σε γωνία 3,6ο. Και λόγω της σχέσης: 3,6ο γωνία σημαίνει 3,6/60 =6% gradient

Επαληθεύσεις Σε ένα SID αναφέρονται τα παρακάτω: Σύμφωνα με όσα μάθαμε τα 450ft/nm είναι 4,5ο path angle. Δηλαδή βρίσκουμε gradient 4,5/60 =7,5%. Χωρίς τριγωνομετρία υπολογίσαμε με μεγάλη ακρίβεια την gradient και τις μοίρες του path angle.

Rate of Descent (vertical speed ft/min) Α τρόπος GroundSpeed=180kts 6000ft ft/min ? 12 nm Ένα πρόβλημα που μας απασχολεί στην κάθοδο, είναι ο υπολογισμός της vertical speed. Π.χ Έχουμε Ground Speed 180 kts και θέλουμε να χάσουμε 6000 feet μέσα σε 12 nm απόσταση, τι ρυθμό καθόδου πρέπει να έχουμε? Ground speed 180kts σημαίνει ότι διανύω απόσταση 180nm σε 60 min δηλαδή 3 μίλια το λεπτό. Συνεπώς την απόσταση των 12 nm θα την καλύψω σε 4 min. Κατά την διάρκεια αυτών των 4 λεπτών, θα πρέπει να χάσω 6000ft δηλαδή, 6000/4 (ft/min)=1500 ft/min

Rate of Descent (vertical speed ft/min) Β τρόπος Από τον γνωστό μας κανόνα, μετά από μερικές πράξεις προκύπτει: Vertical Speed (ft/min)=5xGround Speed(kts). Aν μας αρέσει, γράφουμε το 5 σαν 10/2 οπότε προκύπτει ότι: Η vertical speed πρέπει να είναι το μισό της ground speed επί δέκα. Ισχύει μόνο για 3ο descent angle Προσοχή:

Rate of Descent (vertical speed ft/min) Ground Speed=180kts 6000ft ft/min ? θ 12 nm Στην περίπτωση που έχουμε descent angle διαφορετικό από τις 3ο τότε πολλαπλασιάζουμε με θο/3ο. Η γωνία θ υπολογίζεται εύκολα από την γνωστή μας σχέση. Ύψος(levels)= descent angle (o) x απόσταση(nm) Γνωρίζοντας την θ, μένει να κάνουμε τον υπολογισμό: Vertical Speed (ft/min)=5xGround Speed(kts)xθο/3ο π.χ από το σχήμα προκύπτει: θ=60/12=5ο Συνεπώς: Vertical Speed=5x180x5ο/3ο ft/min= 1500ft/min

Vertical Speed (ft/min)=5xGround Speed(kts)xθο/3ο Εφαρμογή 7η Ετοιμαζόμαστε για μια προσέγγιση η οποία έχει descent path angle 3,5ο. Υπολογίζουμε να αρχίσουμε την διαδικασία με 150kts Ground Speed. Τι ρυθμό καθόδου θα πρέπει να κρατήσουμε; Vertical Speed (ft/min)=5xGround Speed(kts)xθο/3ο Συνεπώς: Vertical Speed=5x150x3,5/3 ft/min=875ft/min

Εφαρμογή 8η Θέλουμε να κάνουμε μια συνεχή κάθοδο από τα 14000ft με σκοπό να περάσουμε ένα ραδιοβοήθημα που απέχει από εμάς 40nm στα 6000ft. Δηλαδή θέλουμε να χάσουμε 8000ft.Έχουμε Ground Speed 300kts. Τι ρυθμό καθόδου πρέπει να διατηρήσουμε; Από τη σχέση: Ύψος (levels)= path angle(o) x απόσταση 80=path angle x 40 path angle=2o Από την σχέση: Vertical Speed (ft/min)=5xGround Speed(kts)xθο/3ο Vertical Speed (ft/min)=5x300x2o/3o ft/min=1000ft/min Επαλήθευση: Με 1000ft/min θα χρειαστούμε 8 λεπτά για να χάσουμε 8000ft. Ground Speed 300kts σημαίνει ότι διανύουμε 5nm/min. Σε αυτά τα 8 λεπτά θα έχουμε διανύσει 8x5nm=40nm.

Αλλαγή ταχύτητας στο descent path Μειώνουμε Ground Speed, μειώνουμε ρυθμό καθόδου. Αυξάνουμε Ground Speed, αυξάνουμε ρυθμό καθόδου. Πόση αύξηση ή μείωση στον ρυθμό καθόδου πρέπει να κάνουμε; Άντε πάλι η ίδια σχέση: Μεταβολή Vertical Speed (ft/min)=5xΜεταβολή Ground Speed(kts) x θο/3ο

Μεταβολή Vertical Speed=5x10x4o/3o ft/min=67 ft/min Εφαρμογή 9η Εκτελούμε μια προσέγγιση με 4ο path angle και μειώνουμε από 120kts σε 110kts ground speed. Τι αλλαγή πρέπει να κάνουμε στον ρυθμό καθόδου για να διατηρηθούμε στο descent path; Μεταβολή Vertical Speed (ft/min)=5xΜεταβολή Ground Speed(kts)x θο/3ο Μεταβολή Vertical Speed=5x10x4o/3o ft/min=67 ft/min

Επαληθεύσεις Σε ένα SID αναφέρονται τα παρακάτω: 450ft/nm σημαίνουν 4,5ο . Σύμφωνα με όσα μάθαμε για ground speed 100kts η Vertical Speed που πρέπει να έχουμε είναι: Vertical Speed (ft/min)=5xGround Speed(kts)xθο/3ο Vertical Speed (ft/min)=5x100x4,5/3ft/min=750ft/min Δηλαδή πάρα πολύ κοντά στα 749ft/min που δίνει ο πίνακας.

Επαληθεύσεις Σε μία ILS διαδικασία αναφέρονται τα παρακάτω: Ας επαληθεύσουμε μερικές τιμές: Σύμφωνα με όσα μάθαμε, υπολογίζοντας προσεγγιστικά έχουμε: Vertical Speed (ft/min)=5x100 ft/min=500ft/min Πoλύ ικανοποιητική προσέγγιση.

Τι μάθαμε. (Aνακεφαλαίωση) Αν η απόσταση ΑΒ είναι 60, η γωνία θο είναι όση η απόσταση ΒΓ. Α Β Γ θ 1ο path angle σημαίνει 100ft/nm Ύψος(levels)= path angle(o) x απόσταση(nm) Vertical Speed (ft/min)=5xGround Speed(kts)xθο/3ο Vertical Speed (ft/min)=5xGround Speed(kts) [για 3ο path angle] Μεταβολή Vertical Speed (ft/min)=5xΜεταβολή Ground Speed(kts)xθο/3ο Μεταβολή Vertical Speed (ft/min)=5xΜεταβολή Ground Speed(kts) [για 3ο path angle]

Η παρουσίαση αυτή ήταν υπόσχεση στον φίλο μου Σπύρο. Ευχαριστώ τον καπετάνιο Στάθη Τσαγκαράτο για τα σχόλια του. For flight simulator enthusiasts. (2005) Μανώλης Αργυρόπουλος Ανανεωμένη έκδοση 2016 – 18 Σεπτεμβρίου