ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ CONFIDENSE INTERVALS

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Keller: Stats for Mgmt & Econ, 7th Ed
Advertisements

ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
Keller: Stats for Mgmt & Econ, 7th Ed
Ανάλυση Πολλαπλής Παλινδρόμησης
Κεφάλαιο 1 Για Ποιο Λόγο; ΔΟΣΑ Δημοκρίτειο Πανεπιστήμιο Θράκης
ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΚΥΛΙΝΔΡΟΥ ΠΟΥ ΚΥΛΙΕΤΑΙ ΣΕ ΠΛΑΓΙΟ ΕΠΙΠΕΔΟ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σημαντικό!!! Στις διαφάνειες.
Στατιστική Ι Παράδοση 5 Οι Δείκτες Διασποράς Διασπορά ή σκεδασμός.
Εργαστήρι παραγωγής λεβέ!!
Keller: Stats for Mgmt & Econ, 7th Ed
ΚΕΦΑΛΑΙΟ 7 ΔΕΙΓΜΑΤΟΛΗΨΙΑ
1 Πανελλαδική πολιτική έρευνα γνώμης Ιανουάριος 2015.
ΚΕΦΑΛΑΙΟ 5 ΧΩΡΙΚΗ ΔΕΙΓΜΑΤΟΛΗΨΙΑ
Βασικές Αρχές Μέτρησης
 Πληθυσμός :  Πληθυσμός :
ΚΑΤΑΝΟΜΕΣ ΠΙΘΑΝΟΤΗΤΩΝ ΔΙΑΚΡΙΤΩΝ ΚΑΙ ΣΥΝΕΧΩΝ ΤΥΧΑΙΩΝ ΜΕΤΑΒΛΗΤΩΝ
Πηγή: Βιοστατιστική [Β.Γ. Σταυρινός, Δ.Β. Παναγιωτάκος]
ΣΤΑΤΙΣΤΙΚΗ ΕΠΑΓΩΓΗ: ΣΗΜΕΙΑΚΕΣ ΕΚΤΙΜΗΣΕΙΣ & ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
Αρχές επαγωγικής στατιστικής
Τι είναι η Κατανομή (Distribution)
Διάλεξη  Μέτρηση: Είναι μια διαδικασία κατά την οποία προσδίδουμε αριθμητικά δεδομένα σε κάποιο αντικείμενο, σύμφωνα με κάποια προκαθορισμένα.
Στατιστική και λογισμικά στις επιστήμες συμπεριφοράς
Στατιστική – Πειραματικός Σχεδιασμός Βασικά. Πληθυσμός – ένα μεγάλο σετ από Ν παρατηρήσεις (πιθανά δεδομένα) από το οποίο το δείγμα λαμβάνεται. Δείγμα.
Πειραματικές Μονάδες Ένα φυτό Ένα πειραματικό τεμάχιο (plot)
Σχεδιασμός των Μεταφορών Ενότητα #5: Δειγματοληψία – Sampling. Δρ. Ναθαναήλ Ευτυχία Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών.
Διαστήματα Εμπιστοσύνης α) για τη μέση τιμή β) για ένα ποσοστό.
 Ο Νόμος των Μεγάλων Αριθμών είναι το θεώρημα που περιγράφει τον τρόπο με τον οποίο συμπεριφέρεται ένα συγκεκριμένο πείραμα, όταν ο αριθμός των επαναλήψεων.
Αρχές επαγωγικής στατιστικής Τμήμα :Νοσηλευτικής Πατρών Διδάσκουσα: Παναγιώταρου Αλίκη Διάλεξη 9.
Για μτ από ατ μέχρι ττ [με_βήμα β] εντολές Τέλος_επανάληψης : περιοχή εντολών μτ : η μεταβλητή της οποίας η τιμή θα περάσει από την αρχική.
Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα 2: Επαγωγική Στατιστική Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής.
Έλεγχος υποθέσεων για αναλογίες. Εάν έχουμε αναλογίες σχετικά με ένα συγκεκριμένο χαρακτηριστικό σε έναν πληθυσμό τότε κάνουμε ελέγχους υποθέσεων για.
Στατιστικές Υποθέσεις (Ερευνητικά Ερωτήματα / Υποθέσεις προς επιβεβαίωση)
Στατιστικές Υποθέσεις (Ερευνητικά Ερωτήματα / Υποθέσεις προς επιβεβαίωση)
Διαστήματα εμπιστοσύνης – δοκιμή t Δ. Κομίλης. Είναι διαφορετικές οι διεργασίες?
ΕΛΕΓΧΟΙ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Η πιο συνηθισμένη στατιστική υπόθεση είναι η λεγόμενη Υπόθεση Μηδέν H 0. –Υποθέτουμε ότι η εμφανιζόμενη διαφορά μεταξύ μιας.
Έλεγχος Υποθέσεων Ο έλεγχος υποθέσεων αναφέρεται στη διαδικασία αποδοχής ή απόρριψης μιας στατιστικής υπόθεσης, Κατά την εκτέλεση ενός στατιστικού ελέγχου,
ΜΕΘΟΔΟΙ ΕΡΕΥΝΑΣ Δειγματοληψία
Διαστήματα Εμπιστοσύνης για αναλογίες. Ποιοτικές μεταβλητές χαρακτηρίζονται εκείνες οι οποίες τα στοιχεία τους δεν έχουν μετρηθεί με κάποιον τρόπο – οι.
Διάστημα εμπιστοσύνης για τη διακύμανση. Υπολογισμός Διακυμάνσεως και Τυπικής Αποκλίσεως Όταν τα δεδομένα αφορούν πληθυσμό – μ είναι ο μέσος του πληθυσμού.
ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΜΕΘΟΔΟΛΟΓΙΑΣ BOX- JENKINS ΣΤΟ SPSS.
Μεθοδολογία έρευνας και στατιστική – Δείγμα – Διαφορά μέσων τιμών
Τι είναι «διάστημα» (1). Διαστήματα Εμπιστοσύνης α) για τη μέση τιμή (ποσοτικά) β) για ένα ποσοστό (ποιοτικά)
Στατιστική Επαγωγή Ένα τεράστιο μέρος της έρευνας διενεργείται μέσω της ανάλυσης δειγμάτων προκειμένου να εξάγουμε συμπεράσματα για τον πληθυσμό. Αυτό.
Στατιστικές Υποθέσεις
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Δειγματοληψία Στην Επαγωγική στατιστική οδηγούμαστε σε συμπεράσματα και αποφάσεις για τις παραμέτρους ενός πληθυσμού με τη βοήθεια ενός τυχαίου δείγματος.
Μέτρα μεταβλητότητας ή διασποράς
Επαγωγική Στατιστική Εκτίμηση και Έλεγχος μέσων τιμών Χαράλαμπος Γναρδέλλης Τμήμα Τεχνολογίας Αλιείας και Υδατοκαλλιεργειών.
Εκτιμητική: σημειακές εκτιμήσεις παραμέτρων
Έλεγχος Υπόθεσης για το μέσο ενός πληθυσμού
ΙΕΚ Γαλατσίου Στατιστική Ι
ΔΙΑΛΕΞΗ 9η Δειγματοληψία Ορισμοί Είδη δειγματοληψίας
«Περιοδική έρευνα πεδίου σε αντιπροσωπευτικό δείγμα ΜΜ εμπορικών επιχειρήσεων» ΦΕΒΡΟΥΑΡΙΟΣ 2013   Ενίσχυση της επιστημονικής και επιχειρησιακής ικανότητας.
Άσκηση 2-Περιγραφικής Στατιστικής
Πολυσυγγραμμικότητα Εξειδίκευση
ΑΠΑΙΤΟΥΜΕΝΑ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Τίτλος της έρευνας : Ο τίτλος της έρευνας πρέπει να είναι σύντομος και ακριβής (12-15 λέξεις). Ο τίτλος πρέπει να περιλαμβάνει.
Βιοστατιστική Ι Μέτρα συσχέτισης στις επιδημιολογικές μελέτες
Κανονική Κατανομή.
Δρ. Γιώργος Μαρκάκης Καθηγητής Βιομετρίας Τ.Ε.Ι. Κρήτης
Πειραματικές Μονάδες Ένα φυτό Ένα πειραματικό τεμάχιο (plot)
ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΟΡΓΑΝΩΝ ΜΕΤΡΗΣΗΣ
ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ
ΣΤΑΤΙΣΤΙΚΗ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
Στατιστικές Υποθέσεις
Στατιστικά Περιγραφικά Μέτρα
4η Εβδομάδα έγινε την 5η: 1η Διάλεξη
Τι είναι «διάστημα» (1). Διαστήματα Εμπιστοσύνης α) για τη μέση τιμή (ποσοτικά) β) για ένα ποσοστό (ποιοτικά)
ΤΕΙ Αθήνας Βιοστατιστική (Θ)
Επίπεδα ενσωμάτωσης ΤΠΕ στα φιλολογικά μαθήματα
Κεφάλαιο 9 Βασικές Αρχές Του Ελέγχου Υποθέσεων: Έλεγχοι Ενός Δείγματος.
Μεταγράφημα παρουσίασης:

ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ CONFIDENSE INTERVALS

Eμπιστοσύνη? Εκτιμώντας την μέση τιμή (μ) του πληθυσμού, παίρνουμε ένα δείγμα n μετρήσεων x1, x2,…xn και υπολογίζουμε τη μέση τιμή του δείγματος Χ. Όμως ΠΟΣΟ ΑΚΡΙΒΗΣ είναι η εκτίμηση που κάνουμε για το μ, με τον τρόπο αυτό?

Τι είναι η εμπιστοσύνη? Πόσο σίγουροι είμαστε πως το Χ έχει εκτιμήσει σωστά το μ? Ή αλλιώς, πόσο κοντά είναι το Χ στο μ? ΔΕΝ ΜΠΟΡΟΥΜΕ να είμαστε «σίγουροι» 100% αν δεν μετρήσουμε ΟΛΟ τον πληθυσμό. Μπορούμε όμως να υπολογίσουμε το μέγιστο δυνατό λάθος (σφάλμα) που κάνουμε σε μια τέτοια εκτίμηση

Τι είναι το 95% Διάστημα εμπιστοσύνης? Είναι ένα διάστημα (Α,Β) όπου έχουμε 95% σιγουριά (εμπιστοσύνη), ότι η ΠΡΑΓΜΑΤΙΚΗ μέση τιμή του πληθυσμού βρίσκεται ανάμεσα στο Α και στο Β. Α Β μ

η εκτίµηση για το p στο προηγούµενο παράδειγµα είναι 0.8 οπότε µπορούµε να συµπεράνουµε ότι ο καλαθοσφαιριστής έχει πιθανότητα περίπου 80% να επιτύχει σε κάποια βολή είναι λάθος να πούµε ότι το ποσοστό είναι 80% ακριβώς σε ένα άλλο δείγµα του ίδιου αθλητή θα µπορούσε (και συνήθως έτσι συµβαίνει στην πράξη) το δειγµατικό ποσοστό να είναι διαφορετικό, π.χ. 75% Για τους παραπάνω λόγους, κρίνεται αναγκαία η κατασκευή ενός διαστήµατος εµπιστοσύνης για το p, δηλ. ενός διαστήµατος της µορφής [L , U] το οποίο να περιέχει το p µε «αρκετά µεγάλη πιθανότητα».

Διάστημα Εμπιστοσύνης… Εναλλακτικά, μπορούμε να χρησιμοποιήσουμε εκτιμήτριες σε φύλλο του EXCEL… values in bold face are calculated for you…