ΛΕΙΤΟΥΡΓΙΚΑ ΣΥΣΤΗΜΑΤΑ Ι Κεφάλαιο 3ο: Αδιέξοδα
3.1 Εισαγωγή Αδιέξοδο = ένα σύνολο από διεργασίες που δημιουργούν μια κυκλική αλυσίδα όπου κάθε process στην αλυσίδα δεν μπορεί να προχωρήσει και περιμένει για κάποιο γεγονός που μπορεί να προκληθεί μόνο από κάποιο άλλο μέλος της αλυσίδας. Τα γεγονότα για τα οποία περιμένουν οι διεργασίες είναι η απελευθέρωση κάποιου πόρου. Για να χρησιμοποιήσουν κάποιο πόρο οι διεργασίες πρέπει να ακολουθήσουν το εξής πρωτόκολλο. Να: ζητήσουν τους πόρους: Αν δεν είναι διαθέσιμοι (δηλ. κάποια άλλη διαδικασία τους χρησιμοποιεί) τότε η διεργασία που το ζητάει μπλοκάρει. Κλειδώνουν και χρησιμοποιούν τον πόρο, αν είναι ελεύθερος Απελευθερώνουν τον πόρο, όταν τελειώσουν.
3.1 Εισαγωγή Αναγκαίες Συνθήκες για Αδιέξοδο: mutual exclusion (αμοιβαίος αποκλεισμός): Μόνο μια διεργασία μπορεί να χρησιμοποιεί έναν πόρο. Κατοχή και αναμονή (hold & wait): Οι διεργασίες που συμμετέχουν στο αδιέξοδο πρέπει και να κατέχουν κάποιο πόρο αλλά και να περιμένουν για κάποιο πόρο. Μη προεκτοπισμός (No preemption): Μόνο η κατέχουσα διεργασία μπορεί ν' απελευθερώσει τον πόρο - δηλ. ο πόρος δεν μπορεί ν' αφαιρεθεί από τη διεργασία. κυκλική αναμονή (circular wait): Ν διεργασίες, όπου κάθε διεργασία περιμένει για έναν πόρο που τον κατέχει η επόμενη διεργασία στην αλυσίδα. Να σημειωθεί, ότι οι «πόροι» μπορεί να είναι λογισμικό και υλικό (π.χ. mutex, κλειδιά για αρχεία, ή δίσκοι, εκτυπωτές, τμήματα μνήμης, κ.λπ).
Μοντέλα Αδιεξόδων Το πρόβλημα μοντελοποιείται ως εξής: Δημιουργείται ένας κατευθυνόμενος γράφος. Κόμβοι του γράφου είναι οι διεργασίες και οι πόροι. Η ακμή P R σημαίνει ότι η διεργασία P περιμένει για τον πόρο R. Η ακμή R P σημαίνει ότι η διεργασία P κατέχει τον πόρο R. Στο σύστημα υπάρχει deadlock εάν και μόνο εάν ο κατευθυνόμενος γράφος περιέχει ένα κύκλο! Έτσι, το σύστημα μπορεί να χρησιμοποιεί ένα τέτοιο γράφο και έναν αλγόριθμο ανίχνευσης κύκλων για να ανιχνεύει αδιέξοδα.
Γενικές Λύσεις Υπάρχουν 4 γενικές στρατηγικές για την αντιμετώπιση του προβλήματος: Στρουθοκαμηλισμός: Κάνε τίποτα. Αποφυγή deadlock (προσέχεις πότε δίνονται οι πόροι στις διεργασίες) Ανίχνευση και ανάνηψη (χρήση του γράφου). Πρόληψη (σιγουρεύει ότι μια από τις 4 αναγκαίες συνθήκες δεν μπορεί να ισχύσει). Στρουθοκαμηλισμός: Η αντιμετώπιση του προβλήματος των αδιεξόδων «κοστίζει» ακριβά. Γι αυτό, πολλά Λ.Σ. επιλέγουν να μην αντιμετωπίζουν καθόλου το πρόβλημα - ούτε καν ανίχνευση!!! Καθιστούν έτσι υπεύθυνες τις εφαρμογές για τη λύση του προβλήματος. Το UNIX ανήκει σ' αυτή την κατηγορία (όπως και όλα τα σύγχρονα Λ.Σ.)... Γιατί;
3.2 Αποφυγή Αδιεξόδων Ας υποθέσουμε ότι για κάθε διεργασία, όταν αυτή αρχίζει, το σύστημα γνωρίζει το μέγιστο αριθμό και τον τύπο κάθε πόρου που θα χρειαστεί η διεργασία. Ο «αλγόριθμος του τραπεζίτη» «Banker's algorithm» μπορεί να χρησιμοποιηθεί τότε. Βασίζεται στην έννοια των ασφαλών καταστάσεων (safe states). Ένα σύστημα σε μια χρονική στιγμή βρίσκεται σε μια ασφαλή κατάσταση αν: δεν υπάρχει deadlock, και υπάρχει τρόπος ικανοποίησης των υπόλοιπων αιτημάτων για πόρους (με το να εξυπηρετηθούν οι αιτήσεις των διεργασιών με όποια σειρά).
3.2 Αποφυγή Αδιεξόδων Παράδειγμα: Ελεύθεροι πόροι: 3 Αυτό αντιπροσωπεύει μια ασφαλή κατάσταση γιατί: μπορούμε να δώσουμε 2 (απ' τους 3) ελεύθερους πόρους στο P2. όταν τελειώσει θα έχουμε 5 ελεύθερους πόρους που δίνουμε στο P3 και όταν τελειώσει δίνουμε 6 στο P1 και έτσι όλες τελειώνουν χωρίς αδιέξοδο. Αν τώρα το P1 κατείχε 4 (αντί για 3) πόρους το σύστημα δεν θα ήταν σε ασφαλή κατάσταση. Γιατί;
Ο αλγόριθμος του τραπεζίτη (Banker's algorithm) Για κάθε αίτηση για έναν πόρο: Εξέτασε, αν δινόταν ο πόρος, αν το σύστημα θα είναι σ' ένα ασφαλή κατάσταση: Αν ναι, τότε δώσε τον πόρο Αν όχι, τότε δεν δίνεται Για να ελεγχθεί αν το σύστημα είναι σε ασφαλή κατάσταση: εξετάζεται το: αν δοθούν οι ελεύθεροι πόροι σε κάποια διεργασία, τότε καλύπτονται οι ανάγκες της; Αν υπάρχει κάποια τέτοια διεργασία, τότε αυτή θεωρείται ότι τελείωσε (ελευθερώνοντας πόρους). Μετά, επαναλαμβάνεται η παραπάνω διαδικασία και αν όλες οι διεργασίες εντέλει θεωρηθούν τελειωμένες, τότε το σύστημα είναι σε ασφαλή κατάσταση. Αλλιώς, δεν είναι.
Ο αλγόριθμος του τραπεζίτη (Banker's algorithm) Ο παραπάνω αλγόριθμος χρησιμοποιείται για συστήματα μ' ένα μόνο τύπο πόρων. Ο αλγόριθμος μπορεί εύκολα να τροποποιηθεί για πολλούς τύπους. Αντί για μια ακέραια μεταβλητή για τους πόρους, υπάρχουν οι εξής πίνακες: Has[N] όπου Ν είναι ο αριθμός τύπων πόρων (δηλ. Has[i], i<=Ν για το process P δείχνει πόσους πόρους τύπου i το P κατέχει). Wants[N] που ορίζεται όμοια και εκφράζει πόσους πόρους κάθε τύπου χρειάζεται κάθε process. Free[N]: δηλώνει πόσους πόρους κάθε τύπου είναι ελεύθερα. Το μεγαλύτερο πρόβλημα του αλγόριθμου αυτού είναι η υπόθεσή του: Είναι πολύ σπάνιο να ξέρουμε από πριν τις αιτήσεις για πόρους που πρόκειται να υποβληθούν αργότερα από κάθε process!
3.3 Ανίχνευση και Ανάνηψη Η στρατηγική αυτή βασίζεται στη χρήση του κατευθυνόμενου γράφου που παρουσιάσαμε πριν, αφ' ένός. Αφ' ετέρου, βασίζεται στην ύπαρξη ενός αλγόριθμου που δεδομένου ενός κατευθυνόμενου γράφου, βρίσκει αν υπάρχει κύκλος. Εφ' όσον ανιχνευθεί ένας κύκλος-deadlock, η ανάνηψη μπορεί να βασισθεί (και συνήθως βασίζεται) στον τερματισμό (killing) μερικών διεργασιών. Η επιλογή της διεργασίας-θύματος: μπορεί να γίνει ανάμεσα στις διεργασίες που συμμετέχουν στο αδιέξοδο. (Τα κριτήρια που χρησιμοποιούνται συνήθως είναι η ηλικία ή ο αριθμός πόρων που κατέχει, κ.λπ). ή μπορεί να γίνει ανάμεσα και σε άλλες διεργασίες π.χ. μπορεί να τερματισθεί μια "μεγάλη" διεργασία που κατέχει πολλά resources για τα οποία περιμένει κάποια διεργασία που είναι σε αδιέξοδο.
3.4 Πρόληψη Αδιεξόδων Εγγυώνται, αυτές οι στρατηγικές, ότι μια από τις 4 αναγκαίες συνθήκες δεν μπορεί να συμβεί/ισχύσει. Mutual Exclusion: πολλοί πόροι απαιτούν αποκλεισμό (π.χ. ταινίες, εκτυπωτές, mutex) δεν μπορούμε σε γενικές γραμμές να τον αποφύγουμε. Hold & Wait: αποφεύγεται αν στη αρχή των διεργασιών γίνουν όλες οι αιτήσεις για όλα τους πόρους που χρειάζονται. Αλλά, όπως προείπαμε, αυτή η πληροφορία δεν υπάρχει. Επίσης ο προεκτοπισμός σε πολλούς τύπους πόρων (π.χ. εκτυπωτές) είναι αδύνατος. Circular Wait: Μπορεί ν' αποφευχθεί με τον εξής τρόπο: σ' όλους τους πόρους δίνεται ένας αύξοντας αριθμός. Όλες οι διεργασίες αναγκάζονται να ζητούν πόρους με την σειρά που αντιστοιχεί στους αριθμούς τους έτσι δεν μπορεί να προκύψει κυκλική αλυσίδα.