{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ψηφιακά Κυκλώματα.
Advertisements

Συνδυαστικα κυκλωματα με MSI και LSI
Συνδυαστικά Κυκλώματα
13.1 Λογικές πύλες AND, OR, NOT, NAND, NOR
Συνδιαστικά Λογικά Κυκλώματα
Ημιαγωγοί – Τρανζίστορ – Πύλες - Εξαρτήματα
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ. Ε. Ι
ΕΝΟΤΗΤΑ 5Η ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΤΗΣ ΤΥΠΙΚΗΣ ΛΟΓΙΚΗΣ Α΄
Άλγεβρα Boole και Λογικές Πύλες
3. Απλοποίηση Συναρτήσεων Boole
HY 120 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Ασυγχρονα ακολουθιακα κυκλωματα.
4. Συνδυαστική Λογική 4.1 Εισαγωγή
ΕΝΟΤΗΤΑ 6Η ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΤΗΣ ΤΥΠΙΚΗΣ ΛΟΓΙΚΗΣ Β΄
ΗΥ120 "ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ" ΙCs.
Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών
ΕΝΟΤΗΤΑ 11 Η ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΟΙ ΛΟΓΙΚΟΙ ΠΙΝΑΚΕΣ (PROGRAMMABLE LOGIC ARRAYS)  Οι λογικοί Πίνακες ως γεννήτριες συναρτήσεων  Επίπεδα AND-OR και OR-AND.
συγχρονων ακολουθιακων κυκλωματων
Συγχρονα Ακολουθιακα Κυκλωματα Flip-Flops Καταχωρητες
ΗΥ120 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Συναρτησεις Boole.
Συνδυαστικά Κυκλώματα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΗΜΥ 100: Εισαγωγή στην Τεχνολογία Διάλεξη 17 Εισαγωγή στα Ψηφιακά Συστήματα: Μέρος Γ TΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ.
ΕΛΑΧΙΣΤΟΠΟΙΗΣΗ ΚΥΚΛΩΜΑΤΩΝ ΠΟΛΛΩΝ ΕΞΟΔΩΝ
Συγχρονα Ακολουθιακα Κυκλωματα Flip-Flops Καταχωρητες
Οι λογικές πράξεις και οι λογικές πύλες
Λογικές πύλες Λογικές συναρτήσεις
ΚΙΝΔΥΝΟΙ (HAZARDS) ΣΤΑ ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ Hazard είναι κάθε στιγμιαίο λάθος (glitch) που εμφανίζεται στην έξοδο ενός συνδυαστικού κυκλώματος Οφείλεται.
ΗΜΥ 100: Εισαγωγή στην Τεχνολογία Διάλεξη 16 Εισαγωγή στα Ψηφιακά Συστήματα: Μέρος B TΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ 1 Διάλεξη 12: Διάλεξη 12: Καταχωρητές - Μετρητές Δρ Κώστας Χαϊκάλης.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
ΟΝΟΜΑ: ΧΡΙΣΤΟΣ ΧΡΙΣΤΟΥ Α.Μ: 6157 ΕΤΟΣ: Ε ΄.  Θα εξετάζουμε την περίπτωση του στατικού αντιστροφέα CMOS που οδηγεί μια εξωτερική χωρητικότητα φορτίου.
Ψηφιακή Σχεδίαση Εργαστήριο Τετάρτη 14/10/2015. Μέρος 1ο Ελαχιστόροι-Μεγιστόροι.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 8: Ολοκληρωμένα κυκλώματα – Συνδυαστική λογική – Πολυπλέκτες – Κωδικοποιητές - Αποκωδικοποιητές Δρ Κώστας Χαϊκάλης ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
ΑΞΙΩΜΑΤΑ ΤΗΣ ΑΛΓΕΒΡΑΣ BOOLE (αξιώματα Huntington) 1. Κλειστότητα α. ως προς την πράξη + (OR) β. ως προς την πράξη  (AND) 2. Ουδέτερα.
Τέταρτο μάθημα Ψηφιακά Ηλεκτρονικά.
Έβδομο μάθημα Ψηφιακά Ηλεκτρονικά.
Τρίτο μάθημα Ψηφιακά Ηλεκτρονικά.
Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής
Ένατο μάθημα Ψηφιακά Ηλεκτρονικά.
Όγδοο μάθημα Ψηφιακά Ηλεκτρονικά.
Έκτο μάθημα Ψηφιακά Ηλεκτρονικά.
Πέμπτο μάθημα Ψηφιακά Ηλεκτρονικά.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 5: Απλοποίηση (βελτιστοποίηση) λογικών συναρτήσεων με την μέθοδο του χάρτη Karnaugh (2ο μέρος) Δρ Κώστας Χαϊκάλης ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ.
Ψηφιακή Σχεδίαση Εργαστήριο Τετάρτη 9/12/2015.
ΑΚΟΛΟΥΘΙΑΚΑ ΣΤΟΙΧΕΙΑ.
Διάλεξη 11: Ανάλυση ακολουθιακών κυκλωμάτων Δρ Κώστας Χαϊκάλης
Διάλεξη 9: Συνδυαστική λογική - Ασκήσεις Δρ Κώστας Χαϊκάλης
Εισαγωγή στους Η/Υ Ενότητα 11: Αλγεβρικές πράξεις στους Η/Υ
Ψηφιακή Σχεδίαση εργαστήριο
Πίνακες διέγερσης Q(t) Q(t+1) S R X X 0
Ψηφιακή Σχεδίαση εργαστήριο
Χειμερινό εξάμηνο 2017 Πέμπτη διάλεξη
Μηχανοτρονική Μάθημα 9ο “ψηφιακά ηλεκτρονικά”
Χειμερινό εξάμηνο 2017 Τέταρτη διάλεξη
Λογικές πύλες και υλοποίηση άλγεβρας Boole ΑΡΒΑΝΙΤΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ(ΣΥΝΕΡΓΑΤΕΣ):ΔΗΜΗΤΡΙΟΣ ΔΑΒΟΣ- ΜΑΡΙΑ ΕΙΡΗΝΗ KAΛΙΑΤΣΗ-ΦΡΑΤΖΕΣΚΟΣ ΒΟΛΤΕΡΙΝΟΣ… ΕΠΠΑΙΚ ΑΡΓΟΥΣ.
Ψηφιακή Σχεδίαση εργαστήριο
Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής
Λογική Σχεδίαση Ψηφιακών Συστημάτων
Ένα ακολουθιακό κύκλωμα καθορίζεται από τη χρονική ακολουθία των ΕΙΣΟΔΩΝ, των ΕΞΟΔΩΝ και των ΕΣΩΤΕΡΙΚΩΝ ΚΑΤΑΣΤΑΣΕΩΝ ΣΥΓΧΡΟΝΑ: Οι αλλαγές της κατάστασης.
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο 2005
Εργασίες 9ου – 10ου Εργαστηρίου
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο 2005
Καταχωρητής Ι3 Α3 D Ι2 Α2 D Ι1 Α1 D Ι0 Α0 D CP.
Υλοποιήσεις λογικών συναρτήσεων
Μεταγράφημα παρουσίασης:

{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης

 Συνδιατικά κυκλώματα  Ημιαθροιστής  Ακολουθιακά Κυκλώματα  Πλήρης Αθροιστής Συνδιαστικά και Ακολουθιακά Κυκλώματα

‘‘Συνδιαστικά λέγονται τα κυκλώματα που αποτελούνται από λογικές πύλες των οποίων οι εξόδοι, ανά πάσα στιγμή καθορίζονται από τις εισόδους εκείνης της στιγμής και δεν εξαρτώνται καθόλου από τις προηγούμενες τιμές των εισόδων’’ Συνδιαστικά Κυκλώματα

Ο ημιαθροιστής είναι ένα συνδιαστικό κύκλωμα με δύο εισόδους και δύο εξόδους που πραγματοποιεί την αριθμιτική πράξη της πρόσθεσης. Αυτή η πράξη έχει ένα αποτέλεσμα( S ) και ένα κρατούμενο( C ). Το όνομα του υποδηλώνει οτι δύο ημιαθροιστές δημιουργούν έναν πλήρη αθροιστή. Ημιαθροιστής ΑΒSC

A / B Πίνακας Karnaugh του Aθροίσματος F(A,B) = AB’ + A’B

A / B Πίνακας Karnaugh του Κρατούμενου F(A,B) = ΑΒ

Λογικό διάγραμμα του Ημιαθροιστή

Υλοποιείστε το κύκλωμα του Ημιαθροιστή στο εργαστήριο και με τους δύο τρόπους. Θα χρησιμοποιήσετε τα ολοκληρωμένα chip 7408(AND), 7432(OR) και 7486(XOR) Υλοποίηση στο εργαστήριο

Ολοκληρωμένα Chip

Η έξοδος ενός συνδιαστικού κυκλώματος, καταχωρείται σε ένα στοιχείο μνήμης. Αυτό το στοιχείο μνήμης μπορεί να αποτελέσει τη δευτερεύσουσα είσοδο ενός ακολουθιιακού κυκλώματος, που η έξοδος που παράγει είναι συνάρτηση των εισόδων των λογικών πυλών του κυκλώματος του, και αυτής της δευτερεύουσας εισόδου. Ακολουθιακά Κυκλώματα

Ο πλήρης αθροιστής είναι ένα ακολουθιακό κύκλωμα που πραγματοποιεί την αριθμιτική πράξη της πρόσθεσης. Έχει τρεις εισόδους και δύο εξόδους. Οι δύο από τις εισόδους που τις συμβολίζουμε με τις μεταβλητές Α και Β, παριστάνουν τα δύο σημαντικά bit που προστίθενται. Η Τρίτη είσοδος ( Ci ) παριστάνει το κρατούμενο από την αμέσως προηγούμενη λιγότερο συμαντική θέση. Η μία έξοδος είναι το αποτέλεσμα του αθροίσματος ( S ) και το δεύτερο είναι το κρατούμενο της πραξης ( C ). Πλήρης Αθροιστής

Πίνακας αληθείας του Πλήρους Αθροιστή ABCiSC

Λογικό διάγραμμα του Πλήρους Αθροιστή

ΗΜΙΑΦΑΙΡΕΤΗΣ Το κύκλωμα που πραγματοποιεί την αφαίρεση των ψηφίων χωρίς να υπολογίζει τυχόν προηγούμενο δανεικό ονομάζεται Ημιαφαιρέτης. Ο Ημιαφαιρέτης έχει δυο εισόδους x και y (τα bit που αφαιρούνται) και δυο εξόδους B (δανεικό) και D (διαφορά). D=x  y B=x’y

ΠΛΗΡΗΣ ΑΦΑΙΡΕΤΗΣ Το κύκλωμα που πραγματοποιεί την αφαίρεση δυο ψηφίων λαμβάνοντας υπόψη τυχόν προηγούμενο δανεικό ονομάζεται Πλήρης Αφαιρέτης. Ο Πλήρης Αφαιρέτης έχει τρεις εισόδους x, y (τα bit που προστίθενται) και z (δανεικό εισόδου) και δυο εξόδους B (δανεικό εξόδου) και D (διαφορά). D=(x  y)  z B=x’y+(x  y)’z

 Υλοποιείστε το κύκλωμα του πλήρους αθροιστή  Υλοποιείστε το κύκλωμα του πλήρους αφαιρέτη Άσκηση στο εργαστήριο