Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

ΕΚΦΕ Ν. Σμύρνης Μετρήσεις Μήκους – Μέση Τιμή Ηλ. Μαυροματίδης σε συνεργασία με τον Αθ. Βελέντζα Υπ. ΕΚΦΕ Αμπελοκήπων.

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "ΕΚΦΕ Ν. Σμύρνης Μετρήσεις Μήκους – Μέση Τιμή Ηλ. Μαυροματίδης σε συνεργασία με τον Αθ. Βελέντζα Υπ. ΕΚΦΕ Αμπελοκήπων."— Μεταγράφημα παρουσίασης:

1 ΕΚΦΕ Ν. Σμύρνης Μετρήσεις Μήκους – Μέση Τιμή Ηλ. Μαυροματίδης σε συνεργασία με τον Αθ. Βελέντζα Υπ. ΕΚΦΕ Αμπελοκήπων

2 Μετρήσεις Μήκους – Μέση Τιμή Παρατηρώ, Πληροφορούμαι, Ενδιαφέρομαι

3 Πώς θα μπορούσε ο Asterix να μετρήσει την απόσταση που χωρίζει τους Ρωμαίους από το Γαλατικό χωριό; Επομένως, η μέτρησή του μπορεί να γίνει με σύγκριση με κάποιο ομοειδές μέγεθος, που το ονομάζουμε μονάδα μέτρησης. Το μήκος είναι ένα φυσικό μέγεθος. Φυσικά μεγέθη είναι ακόμη η μάζα, το βάρος, ο χρόνος, και άλλα.

4 Συζητώ, Αναρωτιέμαι, Υποθέτω Ποια είναι η μονάδα μέτρησης του μήκους; H Μονάδα μέτρησης μήκους που χρησιμοποιείται περισσότερο είναι το μέτρο. Το μέτρο συμβολίζεται με μ. ή m. 1m ΜέγεθοςΣύμβολοΜονάδες Μέτρησης ΜήκοςL (length)m (meter) Ορισμός: Το μέτρο ορίσθηκε για τελευταία φορά το 1983 από την 17 η ΓΣΜΣ ως το μήκος που διανύει το φως στο κενό σε χρόνο 1/ του δευτερολέπτου ακριβώς.

5 Το μέτρο χωρίζεται σε 10 μικρότερα κομμάτια. Το κάθε κομμάτι από αυτά λέγεται: δεκατόμετρο (δεκ. ή dm) 1 dm = 1/10 m ή 0,1 m 1 dm έχει αξία ίση με 1/10 m ή 0,1 m 1m

6 Το ένα δεκατόμετρο χωρίζεται με τη σειρά του σε 10 μικρότερα κομμάτια. Το κάθε κομμάτι από αυτά λέγεται: εκατοστόμετρο (εκ. ή cm) 1 cm έχει αξία ίση με 1/100 m ή 0,01 m 1 cm = 1/100 m ή 0,01 m

7 Εύκολα μπορούμε να συμπεράνουμε ότι: 1 m = 10 dm = 100 cm 1 m dm 100 cm

8 Υπάρχει όμως και μια ακόμη υποδιαίρεση. Κάθε εκατοστόμετρο (εκατοστό) χωρίζεται και αυτό σε 10 μικρότερα κομμάτια που λέγονται: χιλιοστόμετρα (χιλ. ή mm) 1 mm έχει αξία ίση με 1/1000 m ή 0,001 m 1 mm = 1/1000 m ή 0,001 m 1 m = 10 dm = 100 cm = 1000 mm Επομένως

9 Για να μετατρέψουμε μια μονάδα μέτρησης μήκους σε μικρότερη, πολλαπλασιάζουμε με το 10, 100, Ενώ Για να μετατρέψουμε μια μονάδα μέτρησης μήκους σε μεγαλύτερη, διαιρούμε με το 10, 100, ,8 m X 10 = 18 dm 1,8 m X 100 = 180 cm 1,8 m X 1000 = 1800 mm m dm cm mm 40 dm :10 = 4 m 400 cm : 100 = 4 m 4000 mm : 1000 = 4 m X 10 :10

10 Ενεργώ, Πειραματίζομαι Όργανα μέτρησης μήκους Μετροταινία, υποδεκάμετρο, διαστημόμετρο, μικρόμετρο Αντικείμενα υποκείμενα σε μέτρηση Θρανίο, τετράδιο, κλειδί, μολύβι

11 Υποδεκάμετρο ή βαθμολογημένος κανόνας είναι το όργανο με το οποίο μπορούμε να μετρήσουμε μήκη έως 30 cm με ακρίβεια μέχρι 0,5 mm. Μετροταινία είναι το όργανο με το οποίο μπορούμε να μετρήσουμε μήκη έως 100 m με ακρίβεια μέχρι 0,5 mm. Διαστημόμετρο είναι το όργανο με το οποίο μπορούμε να μετρήσουμε μήκη έως 25 cm με ακρίβεια περίπου 0,1 mm. Μικρόμετρο ή παχύμετρο είναι το όργανο με το οποίο μπορούμε να μετρήσουμε μήκη έως 2,5 cm με ακρίβεια περίπου 0,01 mm.

12 Όταν θέλουμε να μετρήσουμε μεγάλες αποστάσεις, όπως για παράδειγμα την επίδοση ενός ακοντιστή ή τις διαστάσεις ενός δωματίου (ή και ενός οικοπέδου), χρησιμοποιούμε την μετροταινία.

13 Παράδειγμα μέτρησης με μετροταινία Στη μετροταινία έχουμε τις «μεγάλες» γραμμές που δείχνουν τα cm και τις «μικρότερες» γραμμές που δείχνουν τα χιλιοστά. Υπάρχει για παράδειγμα η «μεγάλη» γραμμή 59cm (ή 590mm) αμέσως μετά η «μεγάλη» γραμμή 60cm (ή 600mm) και ανάμεσά τους 9 μικρότερες γραμμές που αντιστοιχούν στα 59,1cm (ή 591mm), 59,2cm (ή 592mm) κ.ο.κ. Έστω οι μαθητές μετράνε με μετροταινία το πλάτος ενός τραπεζιού του εργαστηρίου 4 φορές. Αν ο ένας μαθητής “βλέπει” το πλάτος του τραπεζιού μεταξύ των μεγάλων γραμμών 59cm και 60cm και πλησιέστερα στην 4η μικρή γραμμή μετά το 59, γράφει ότι η μέτρηση είναι 59,4cm ή (594mm). Αν οι 4 μετρήσεις σε cm είναι: 59,4 - 59,9 - 60,2 – 60,0 (σε mm, αντίστοιχα, είναι: 594 – 599 – 602 – 600), τότε η μέση τιμή είναι 59,875 cm (598,75 mm) που στρογγυλοποιείται σε 59,9 cm (599 mm)

14 Πιθανά προβλήματα κατά τη μέτρηση μήκους με μετροταινία

15

16

17 Γράψε τα συμπεράσματά σου από τις παρατηρήσεις και τις μετρήσεις σου. …………………………………………………………………………………………………………… Γιατί νομίζεις ότι είναι χρήσιμος ο υπολογισμός της μέσης τιμής των τιμών πολλών μετρήσεων; …………………………………………………………………………………………………………… Συμπεραίνω, Καταγράφω Συμπεράσματα

18 Εφαρμόζω, Εξηγώ, Γενικεύω

19 Το αποστασιόμετρο Laser Μετρά αποστάσεις υπολογίζοντας το χρόνο που χρειάζεται ένας παλμός να διανύσει την απόσταση και να επιστρέψει αφού ανακλαστεί. Η απόσταση υπολογίζεται από το χρόνο και την ταχύτητα του φωτός που είναι γνωστή. (πηγή Πώς νομίζεις ότι λειτουργεί το όργανο μέτρησης μήκους το οποίο φαίνεται στην εικόνα;

20 Πώς νομίζεις ότι μετράμε την απόσταση γης – σελήνης; Από :  Ο Αρίσταρχος ο Σάμιος ( π.Χ.) έδειξε ότι: D Γης-Σελήνης =19 R Γ  Ο Ίππαρχος ( π.Χ) διόρθωσε αυτή τη σχέση: D Γης-Σελήνης =60 R Γ

21 Μέτρηση απόστασης Γης-Σελήνης με Laser Στη φωτογραφία δείχνεται η θέση των ανακλαστήρων στη Σελήνη. H απόσταση υπολογίστηκε με ακρίβεια της τάξης χιλιοστών του μέτρου.

22 Μέτρηση απόστασης Γης - Σελήνης με απλά μέσα ! Προκαλούμε μια τεχνητή έκλειψη Σελήνης με το να τοποθετήσουμε κατάλληλα ένα νόμισμα στη ράβδο και σε απόσταση από το μάτι μας τέτοια ώστε να "κρύβεται" το γιομάτο φεγγάρι. Στη συνέχεια υπολογίζεται η απόσταση Γης - Σελήνης βασιζόμενοι σε μια σχέση που προκύπτει εύκολα με λίγες γνώσεις Γεωμετρίας: D Γης-Σελήνης = δ Σ * χ / δ όπου χ η απόσταση από το νόμισμα μέχρι το μάτι, δ η διάμετρος του νομίσματος και δ Σ η διάμετρος της σελήνης.

23 Από το micro-kosmos.uoa.gr (από το φύλλο εργασίας Α1 plus) Για να συμπληρωθούν τα κενά οι πληροφορίες δίνονται στις επόμενες διαφάνειες

24

25

26 Μέτρηση της μεγαλύτερης διάστασης και της περιμέτρου ενός αυγού με μετροταινία Απορρίπτεται η οριοθέτηση με το μάτι (εικόνα 1), όπως και αυτή με τις οδοντογλυφίδες (εικόνα 2). Μπορούμε να το οριοθετήσουμε με χοντρά βιβλία είτε έχουμε το αυγό πάνω στη μεζούρα είτε σε χαρτί μιλιμετρέ. Για την περίμετρο εκτός από τη χρήση μεζούρας μπορούμε να κυκλώσουμε με ένα σχοινί και στη συνέχεια να μετρήσουμε το σχοινί. X X

27 600*X=192 X= 192/600=0,32m= 32 cm. Τελικά φορούσε 49 Νούμερο

28 Δες την βασική πληροφορία στην επόμενη διαφάνεια.

29 Η ακρίβεια ενός τέτοιου διαστημόμετρου είναι 0.1 mm

30 Μπορούμε με την μετροταινία να μετρήσουμε την ακτίνα (R) της ρόδας. Η περίμετρος της είναι: Π=2x3.14xR Η ρόδα κάνει Ν ακέραιες περιστροφές για να κινηθεί κατά μήκος του Προαυλίου + κάποιο υπόλοιπο (d) που μετριέται με την μετροταινία. Τελικά, το μήκος του προαυλίου είναι L= ΠxΝ+d


Κατέβασμα ppt "ΕΚΦΕ Ν. Σμύρνης Μετρήσεις Μήκους – Μέση Τιμή Ηλ. Μαυροματίδης σε συνεργασία με τον Αθ. Βελέντζα Υπ. ΕΚΦΕ Αμπελοκήπων."

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google