Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)"— Μεταγράφημα παρουσίασης:

1 1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B) Β. Μάγκλαρης Β. Μάγκλαρης Σ. Παπαβασιλείου Σ. Παπαβασιλείου

2 Επανάληψη (1): Ουρά Μ/Μ/1 (άπειρου μεγέθους) Σταθεροί μέσοι ρυθμοί αφίξεων (γεννήσεων) λ n = λ, Poisson Σταθεροί μέσοι ρυθμοί εξυπηρέτησης (θανάτων) μ n = μ Εκθετικοί χρόνοι εξυπηρέτησης s, E(s) = 1/μ Εργοδικές πιθανότητες καταστάσεων P n Μέσος όρος πληθυσμού - κατάστασης Ε(n)

3 Επανάληψη (2): State Dependent M/M/1 Queues Συστήματα Μ/Μ/1 με ρυθμούς άφιξης και ρυθμούς εξυπηρέτησης εξαρτώμενους από τον αριθμό των πελατών στο σύστημα (από την κατάσταση του συστήματος) (State Dependent M/M/1 Queues) λ(n) μ(n) λ(0)λ(1)λ(n-1) μ(1) μ(2) λ(n) μ(n) μ(n+1) 0 12 n-1 n n+1

4 Επανάληψη (3): Ουρά Μ/Μ/1 (άπειρου μεγέθους) Η ουρά Μ/Μ/1 P n = (1-ρ) ρ n, n = 0,1,2,…, ρ = λ/μ < 1 E(n) = ρ/(1-ρ) Νόμος του Little: E(T) = E(n)/γ = E(n)/λ E(T) = (1/μ) / (1-ρ)

5 Ουρά M/M/1/K Παράδειγμα Ανάλυσης Ουρών Markov: M/M/1/K (ουρά με μέγιστη χωρητικότητα Κ, συμπεριλαμβανομένου του εξυπηρετουμένου) Πιθανότητα απώλειας, P{blocking} P bl = P Κ = P ο ρ Κ, P 0 = (1-ρ)/(1-ρ Κ+1 ) Ρυθμαπόδοση (Throughput) γ = λ (1- P Κ ) Μέση Καθυστέρηση Ε(Τ) = Ε(n)/γ

6

7 Παράδειγμα ανάλυσης ουράς Markov με m εξυπηρετητές M/M/m [Erlang –C] Infinite buffer Finite # of servers (m) Prob. All servers are busy ρ’ = λ/μ Erlangs, ρ = ρ’/m < 1

8 Παραδείγματα Ουρών Markov: Μ/Μ/Ν/Κ και M/M/m/m (m εξυπηρετητές, χωρητικότητα m) Erlang – B –Μ/Μ/Ν/Κ (Ν εξυπηρετητές, χωρητικότητα Κ, N ≤ K) P n = [λ/(nμ)] P n-1, n=1, 2, …, N-1 P n = [λ/(Nμ)] P n-1, n=N, N+1, …, K P 0 + P 1 +…+ P K-1 + P K = 1

9 M/M/m/m (m εξυπηρετητές, χωρητικότητα m) Erlang – B –M/M/m/m (m εξυπηρετητές, χωρητικότητα m) Erlang – B Μοντέλο τηλεφωνικού κέντρου με μέσο ρυθμό κλήσεων λ (Poisson), εκθετική διάρκεια τηλεφωνήματος, μέσος χρόνος 1/μ, m γραμμές και απώλειες χωρίς επανάκληση (redial) ρ = λ/μ (Erlangs) P bl = P m = (ρ m /m!) / (1 + ρ + ρ 2 /2+ ρ 3 /3! ρ m /m!)

10


Κατέβασμα ppt "1 ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems ΣΥΣΤΗΜΑΤΑ ΑΝΑΜΟΝΗΣ Queuing Systems Συστήματα Αναμονής Μ/Μ/1, M/M/1/K, M/M/m (Erlang-C), M/M/N/K, M/M/m/m (Erlang-B)"

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google