Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

Η παρουσίαση φορτώνεται. Παρακαλείστε να περιμένετε

“ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΚΛΙΜΑ"

Παρόμοιες παρουσιάσεις


Παρουσίαση με θέμα: "“ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΚΛΙΜΑ""— Μεταγράφημα παρουσίασης:

1 “ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΚΛΙΜΑ"
Χρήστος Ζερεφός, Ακαδημαϊκός Πρόεδρος της Διεθνούς Επιτροπής Όζοντος

2 «ΟΥΚ ΑΙΕΙ Δ’ ΟΙ ΑΥΤΟΙ ΤΟΠΟΙ ΤΗΣ ΓΗΣ ΕΝΥΓΡΟΙ ΕΙΝΑΙ
ΟΥΤΕ ΞΗΡΟΙ ΑΛΛΑ ΜΕΤΑΒΑΛΛΟΥΣΙΝ … ΚΑΤΑ ΜΕΝΤΟΙ ΤΙΝΑ ΤΑΞΙΝ ΝΟΜΙΖΕΙΝ ΧΡΗ ΤΑΥΤΑ ΓΙΓΝΕΣΘΑΙ ΚΑΙ ΠΕΡΙΟΔΟΝ …» ΑΡΙΣΤΟΤΕΛΟΥΣ ΜΕΤΕΩΡΟΛΟΓΙΚΑ Βιβλίον Ι Κεφ 14 Από τη «Σχολή των Αθηνών» του Ραφαήλ, ο Πλάτων και ο Αριστοτέλης

3 Χωρίς θερμοκηπικά αέρια η μέση θερμοκρασία της Γης θα ήταν περίπου -19οC, ενώ σήμερα είναι +14.5οC
ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

4 ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ 2008 - ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

5 CO2 εγκλωβισμένο στους Παγετώνες
2100 μ.Χ. CO2 (ppm) 2010 μ.Χ. 1850 μ.Χ. Έτη ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

6 Χιλιάδες Έτη πριν από σήμερα (2010)
Κυκλικές μεταβολές Figure 6.3. Variations of deuterium (δD; black), a proxy for local temperature, and the atmospheric concentrations of the greenhouse gases CO2 (red), CH4 (blue), and nitrous oxide (N2O; green) derived from air trapped within ice cores from Antarctica and from recent atmospheric measurements (Petit et al., 1999; Indermühle et al., 2000; EPICA community members, 2004; Spahni et al., 2005; Siegenthaler et al., 2005a,b). The shading indicates the last interglacial warm periods. Interglacial periods also existed prior to 450 ka, but these were apparently colder than the typical interglacials of the latest Quaternary. The length of the current interglacial is not unusual in the context of the last 650 kyr. The stack of 57 globally distributed benthic δ18O marine records (dark grey), a proxy for global ice volume fluctuations (Lisiecki and Raymo, 2005), is displayed for comparison with the ice core data. Downward trends in the benthic δ18O curve reflect increasing ice volumes on land. Note that the shaded vertical bars are based on the ice core age model (EPICA community members, 2004), and that the marine record is plotted on its original time scale based on tuning to the orbital parameters (Lisiecki and Raymo, 2005). The stars and labels indicate atmospheric concentrations at year 2000. Χιλιάδες Έτη πριν από σήμερα (2010) ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

7 Η ενδεκαετής ηλιακή δραστηριότητα από το 1600 εως το 2000
ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

8

9 IPCC, 2013, Chapter 1 Figure 1.1 | Main drivers of climate change. The radiative balance between incoming solar shortwave radiation (SWR) and outgoing longwave radiation (OLR) is influenced by global climate ‘drivers’. Natural fluctuations in solar output (solar cycles) can cause changes in the energy balance (through fluctuations in the amount of incoming SWR). Human activity changes the emissions of gases and aerosols, which are involved in atmospheric chemical reactions, resulting in modified O3 and aerosol amounts. O3 and aerosol particles absorb, scatter and reflect SWR, changing the energy balance. Some aerosols act as cloud condensation nuclei modifying the properties of cloud droplets and possibly affecting precipitation. Because cloud interactions with SWR and LWR are large, small changes in the properties of clouds have important implications for the radiative budget. Anthropogenic changes in GHGs (e.g., CO2, CH4, N2O, O3, CFCs) and large aerosols (>2.5 μm in size) modify the amount of outgoing LWR by absorbing outgoing LWR and re-emitting less energy at a lower temperature. Surface albedo is changed by changes in vegetation or land surface properties, snow or ice cover and ocean colour (Section 2.3). These changes are driven by natural seasonal and diurnal changes (e.g., snow cover), as well as human influence (e.g., changes in vegetation types) (Forster et al., 2007).

10 Figure 2.24 | Global annual average lower stratospheric (top) and lower tropospheric (bottom) temperature anomalies relative to a 1981–2010 climatology from different data sets. STAR does not produce a lower tropospheric temperature product. Note that the y-axis resolution differs between the two panels. IPCC, 2013, Chapter 2

11 Figure 1: Layer mean temperature variations in northern hemisphere summer (JJA) at layers hPa, hPa, hPa and hPa calculated from NCEP reanalysis and FU-Berlin datasets and filtered from natural variations for three latitudinal belts a) 5N-30N, b) 30N - 60N and c) 60N - 90N. The respective summer normalised time series of temperature from RICH dataset at levels 850 hPa, 500 hPa, 50 hPa and 30 hPa are also illustrated as well as the NCEP tropopause pressure. The trends lines before and after 1979 are superimposed. Grey lines denote NCEP reanalysis variations. Green lines denote variations as depicted in the FU-Berlin analysis, while purple dotted lines the RICH data temperature. The units at vertical axis are in degrees oC except for the tropopause that is in hPa. Zerefos et al., 2014

12 IPCC, 2007 Ψυχρές νύχτες Ψυχρές μέρες Θερμές νύχτες Θερμές μέρες
FAQ 3.3, Figure 1. Observed trends (days per decade) for 1951 to 2003 in the frequency of extreme temperatures, defined based on 1961 to 1990 values, as maps for the 10th percentile: (a) cold nights and (b) cold days; and 90th percentile: (c) warm nights and (d) warm days. Trends were calculated only for grid boxes that had at least 40 years of data during this period and had data until at least Black lines enclose regions where trends are significant at the 5% level. Below each map are the global annual time series of anomalies (with respect to 1961 to 1990). The orange line shows decadal variations. Trends are significant at the 5% level for all the global indices shown. Adapted from Alexander et al. (2006). IPCC, 2007

13 Μέση βροχόπτωση το χειμώνα στη Μεσόγειο από ιστορικές και άλλες πηγές από το 1500 έως το (Luterbacher et al., 2006)

14 FAQ 3.2, Figure 1. The most important spatial pattern (top) of the monthly Palmer Drought Severity Index (PDSI) for 1900 to The PDSI is a prominent index of drought and measures the cumulative deficit (relative to local mean conditions) in surface land moisture by incorporating previous precipitation and estimates of moisture drawn into the atmosphere (based on atmospheric temperatures) into a hydrological accounting system. The lower panel shows how the sign and strength of this pattern has changed since Red and orange areas are drier (wetter) than average and blue and green areas are wetter (drier) than average when the values shown in the lower plot are positive (negative). The smooth black curve shows decadal variations. The time series approximately corresponds to a trend, and this pattern and its variations account for 67% of the linear trend of PDSI from 1900 to 2002 over the global land area. It therefore features widespread increasing African drought, especially in the Sahel, for instance. Note also the wetter areas, especially in eastern North and South America and northern Eurasia. Adapted from Dai et al. (2004b). IPCC, 2007

15 Λίμνη Αράλη 1973 Λίμνη Αράλη 2004 Η λίμνη Αράλη συρρικνώθηκε κατά 75% από το 1967. Η λίμνη Τσαντ στην Αφρική συρρικνώθηκε κατά 95% από το 1963. Η στάθμη της Νεκράς θάλασσας μειώθηκε κατά 25μ τα τελευταία 50 χρόνια. Η ακτογραμμή στο Μπαγκλαντές πρέπει να επανασχεδιαστεί λόγω απωλειών στη θάλασσα. Η παγωμένη επιφάνεια στο όρος Κιλιμάντζαρο στην Αφρική έχει μειωθεί περισσότερο από 80% Δορυφορικές εικόνες της ξήρανσης της λίμνης Αράλης στην Κεντρική Ασία, με διαφορά 30 ετών ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ

16

17 Ενδείξεις αλλαγής της στάθμης της θάλασσας τα τελευταία 22 χιλιάδες χρόνια στη Μεσόγειο
M. Anzidei ~8-6 ka Wells (Israel) Grotta Verde (Sardinia) ~22 ka Cosquer (France) ~3.5ka Bronze age Sites (Israel) ~2ka Roman age Sites (Med) ~0.5ka Bizanthyne Ανθρω- πόκαινος ~2.5ka Greek age -120 m -8.5 m -6 m -2.5 m -1.35 m -0.5 m χρόνος 1-2 mm/yr EGU Vienna

18 SW Turkey – seismic region
Cleopatra’s bath Twelve islands r.s.l.c.> 3m in 1.6 ka Kekova The Lycian tombs r.s.l.c.> 4m in 2.5 ka

19 Λεπτομέρεια από παράσταση στην αψίδα του Γαλερίου όπως φωτογραφήθηκε προπολεμικά από το Γερμανικό Αρχαιολογικό Ινστιτούτο (αριστερά) και όπως φωτογραφήθηκε σήμερα από το συγγραφέα (δεξιά) Ζερεφός, 1984 19

20 20

21 Mean Air Temperature SRES A1B: Mean Air Temperature Change between and , SRES A1B : Over Greece Mean annual air Temperature increase by 1.4 oC. : Over Greece Mean annual air Temperature increase by 2.8 oC (SRES B2) up to 3.9 oC (SRES A2) Temperature increase is more significant during summer and autumn than during winter and spring. Temperature increase is more prominent over land. SRES A1B: Mean Air Temperature Change between and Mean Air Temperature Change between and

22 Precipitation 2021-2050, SRES A1B:
SRES A1B: Mean Annual Precipitation Percentage Change Between and , SRES A1B: Over Greece Mean annual Precipitation is predicted to decrease by 6.5%. : Over Greece Mean annual Precipitation is predicted to decrease by 5% (SRES B2) and by 18% (SRES A1B, SRES A2) SRES A1B: Mean Annual Precipitation Percentage Change Between and Mean Annual Precipitation Percentage Change Between and

23 Relative Humidity SRES A1B: Percentage Change of Mean annual Relative Humidity between and , SRES A1B: Over Continental Greece Mean annual Relative Humidity is predicted to decrease by 2%. : Over Continental Greece Mean annual Relative Humidity is predicted to decrease for 2.5% up to 4% (SRES B2) and for 6% up to 10% (SRES A2) Relative Humidity decrease is predicted to be more significant for summer season. SRES A1B: Percentage Change of Mean annual Relative Humidity between and Percentage Change of Mean annual Relative Humidity between and

24 Wind Speed For Greece as a whole mean annual Wind Speed will be not change during 21th century : Mean annual Wind Speed is predicted to increase up to 5% over Aegean and on the contrary is predicted to decrease up to 5% over Ionian During summer Etesian Winds will be increase significantly up to 10% SRES A1B: Mean annual Wind Speed Percentage Change between and SRES A1B: Mean annual Wind Speed Percentage Change between and Mean annual Wind Speed Percentage Change between and

25 Cloud Fractional Cover
SRES A1B: Mean annual Cloud Cover Percentage Change between and , SRES A1B: Over Greece Mean annual Cloud fractional Cover is predicted to be reduced by 6% : Mean annual Cloud fractional Cover is predicted to be reduced by 8% (SRES B2) by 12% (SRES A1B) by 14% (SRES A2) SRES A1B: Mean annual Cloud Cover Percentage Change between and Mean annual Cloud Cover Percentage Change between and

26 Downward Short Wave Surface Radiation
, SRES A1B: Mean Annual Downward Short Wave Surface Radiation increase by 1,3 W/m2. : Mean Annual Downward Short Wave Surface Radiation increase by 3,1 W/m2 (SRES B2) by 4,1 W/m2 (SRES A2) The increase is more prominent over land, especially in western and northern parts SRES A1B: Mean Annual Downward Short Wave Surface Radiation Change between and SRES A1B: Mean Annual Downward Short Wave Surface Radiation Change between and Mean Annual Downward Short Wave Surface Radiation Change between and

27 Changes in Costal Areas because of Sea Level Rise
Coastal Areas with a) Moderate Vulnerability (green) b) High Vulnerability (red) Coastline Retreat Under Flooding Area

28 Conclusions for Greece
, SRES A1B : Over Greece Mean annual air Temperature increase by 1.4 oC. : Over Greece Mean annual air Temperature increase for 2.8 oC (SRES B2) up to 3.9 oC (SRES A2) Temperature increase is more significant during summer and autumn than during winter and spring. Temperature increase is more prominent over land. , SRES A1B: Over Greece Mean annual Precipitation is predicted to decrease by 6.5%. : Over Greece Mean annual Precipitation is predicted to decrease by 5% under SRES B2 and by 18% under SRES A1B and SRES A2 , SRES A1B: Over Continental Greece Mean annual Relative Humidity is predicted to decrease by 2%. : Over Continental Greece Mean annual Relative Humidity is predicted to decrease for 2.5% up to 4% under SRES B2 and for 6% up to 10% under SRES A2 Relative Humidity decrease is predicted to be more significant for summer season.

29 Conclusions for Greece
For Greece as a whole mean annual Wind Speed will be not change during 21th century : Mean annual Wind Speed is predicted to increase up to 5% over Aegean and on the contrary is predicted to decrease up to 5% over Ionian During summer Etesian Winds will be increase significantly up to 10% , SRES A1B: Over Greece Mean annual Cloud fractional Cover is predicted to be reduced by 6% : Mean annual Cloud fractional Cover is predicted to be reduced by 8% under SRES B2, by 12% under SRES A1B and by 14% under SRES A2 , SRES A1B: Mean Annual Downward Short Wave Surface Radiation increase by 1,3 W/m2. : Mean Annual Downward Short Wave Surface Radiation increase by 3,1 W/m2 under SRES B2 and by 4,1 W/m2 under SRES A2 The increase is more prominent over land, especially in western and northern parts Transportation Cost for the infrastructure maintenance €594,8m/year to €195m/year depending on the GHG emissions Cost of delays in service due to climate change (extreme events, overheating of infrastructure etc.): €28bn to €9.3bn

30 Ανωμαλία στη θερμοκρασία (ºC)
Έτος Οι πολύ υψηλές θερμοκρασίες στην Ευρώπη το θέρος του 2003 θα αποτελούν τον κανόνα μέχρι το 2040 και θα θεωρούνται χαμηλές μετά το 2060! ΠΝΕΥΜΑΤΙΚΗ ΙΔΙΟΚΤΗΣΙΑ ΧΡΗΣΤΟΣ Σ. ΖΕΡΕΦΟΣ


Κατέβασμα ppt "“ΠΑΡΟΝ ΚΑΙ ΜΕΛΛΟΝ ΚΛΙΜΑ""

Παρόμοιες παρουσιάσεις


Διαφημίσεις Google