ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 8 ο Ανίχνευση Ακμών. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Αλγόριθμοι σχεδίασης βασικών 2D σχημάτων (ευθεία)
Advertisements

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ “Σύνθεση πληροφοριών αισθητήρων για την ασφαλή πλοήγηση έντροχου ρομποτικού οχήματος” Αθανάσιος.
Επίπεδα Γραφήματα (planar graphs)
Εργαστήριο Ψηφιακής Επεξεργασίας Εικόνας
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 9 ο Κατάτμηση Εικόνας. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Η κατάτμηση έχει ως στόχο να υποδιαιρέσει την εικόνα σε συνιστώσες περιοχές και.
Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA.
Πολυπλοκότητα Παράμετροι της αποδοτικότητας ενός αλγόριθμου:
 Αυδίκου Χριστίνα  Γιουμούκης Παναγιώτης  Κιντσάκης Θάνος  Πάπιστας Γιάννης.
ΚΕΦΑΛΑΙΟ 2 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 10 ο Περιγραφή Σχήματος. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1) Η περιγραφή μίας περιοχής μπορεί να γίνει:  Με βάση τα εξωτερικά χαρακτηριστικά.
ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 8 ο Ανίχνευση Ακμών. ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα.
Εισαγωγικές Έννοιες Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο.
Κατάτμηση Εικόνων ΔΤΨΣ 150 – Ψηφιακή Επεξεργασία Εικόνας
Γραφήματα & Επίπεδα Γραφήματα
ΜΕΛΕΤΗ ΧΡΟΝΟΣΕΙΡΩΝ ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΗ
ΔΤΨΣ 150: Ψηφιακή Επεξεργασία Εικόνας © 2005 Nicolas Tsapatsoulis Κατάτμηση Εικόνων: Κατάτμηση με βάση τις περιοχές Τμήμα Διδακτικής της Τεχνολογίας και.
Προσεγγιστικοί Αλγόριθμοι
Computational Imaging Laboratory Υπολογιστική Όραση ΤΜΗΥΠ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ.
3 Σ υ σ τ ή μ α τ α α ν α φ ο ρ ά ς κ α ι χ ρ ό ν ο υ
ΕΥΡΕΣΗ ΚΑΤΗΓΟΡΙΚΩΝ ΕΚΤΟΠΩΝ ΣΕ ΒΙΒΛΙΟΓΡΑΦΙΚΗ ΒΑΣΗ ΔΕΔΟΜΕΝΩΝ
Συμπίεση και Μετάδοση Πολυμέσων
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας
ΘΕΩΡΙΑ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΠΑΡΟΥΣΙΑΣΗ ΣΤΑ ΚΕΦΑΛΑΙΑ 7.4 – 7.6 NP ΠΛΗΡΟΤΗΤΑ.
Computational Imaging Laboratory Υπολογιστική Όραση ΤΜΗΥΠ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ.
Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης
Στοιχεία από τα Διανύσματα
1 Γραφική με Υπολογιστές Β. Λούμος. 2 Περιεχόμενα Εισαγωγή στη Γραφική Περιφερειακά Γραφικής και οδήγηση Αρχές σχεδίασης εικόνων Δημιουργία και σχεδίαση.
Παρουσίαση Νο. 6 Αποκατάσταση εικόνας Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας.
Εργαστήριο του μαθήματος “Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας”
3 Σ υ σ τ ή μ α τ α α ν α φ ο ρ ά ς κ α ι χ ρ ό ν ο υ
2.3 ΚΙΝΗΣΗ ΜΕ ΣΤΑΘΕΡΗ ΤΑΧΥΤΗΤΑ
Χρονική Πολυπλοκότητα και Μοντέλα
Computational Imaging Laboratory ΤΜΗΥΠ ΕΡΓΑΣΤΗΡΙΟ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Υπολογιστική Όραση.
ΑΝΑΠΑΡΑΣΤΑΣΕΙΣ ΤΗΣ ΚΙΝΗΣΗΣ ΚΑΤ’ ΟΙΚΟΝ ΕΡΓΑΣΙΑ. Σταθερή μηδενική ταχύτητα Περιγραφή της κίνησης: Το σώμα είναι ακίνητο, μπορεί να έχει οποιαδήποτε θέση.
JPEG Μια τεχνική συμπίεσης ακίνητης εικόνας. Η Τεχνική JPEG Αφορά συμπίεση ακίνητων εικόνων Είναι τεχνική συμπίεσης με απώλειες Το πρόβλημα είναι η εκάστοτε.
Μέγιστη ροή TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA A A Συνάρτηση χωρητικότητας Κατευθυνόμενο γράφημα.
Εύρεση Ακμών σε Ψηφιακές Εικόνες αποχρώσεων του γκρι
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΡΆΡΤΗΜΑ ΛΕΥΚΑΔΑΣ ΥΠΕΥΘΥΝΗ ΚΑΘΗΓΉΤΡΙΑ Δρ. ΤΣΙΝΤΖΑ ΠΑΝΑΓΙΩΤΑ Οι παρουσιάσεις του μαθήματος βασίζονται στο.
ΣΤΑΤΙΚΗ Ι Ενότητα 1 η : Ο ΔΙΣΚΟΣ ΚΑΙ Η ΔΟΚΟΣ Διάλεξη: Εισαγωγή στις γραμμές επιρροής. Καθηγητής Ε. Μυστακίδης Τμήμα Πολιτικών Μηχανικών Π.Θ. ΠΑΝΕΠΙΣΤΗΜΙΟ.
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΕΥΡΕΤΙΚΕΣ ΜΕΘΟΔΟΥΣ Άπληστη Αναζήτηση και Αναζήτηση Α* ΣΠΥΡΟΣ ΛΥΚΟΘΑΝΑΣΗΣ, ΚΑΘΗΓΗΤΗΣ.
Παρουσίαση πτυχιακής εργασίας Σαλιάρη Αικατερίνη Επιβλέπων καθηγητής: Αθανάσιος Νικολαΐδης.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 8 η Διάλεξη ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΧΡΗΣΗΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΤΩΝ ΡΙΖΩΝ Το σύστημα ελέγχου.
Εργασίες – Γενικές οδηγίες
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ψηφιακή Επεξεργασία Εικόνας
ΜΕΘΟΔΟΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
ΔΙΑΝΥΣΜΑΤΙΚΗ ΠΑΡΑΣΤΑΣΗ ΕΝΑΛΛΑΣΣΟΜΕΝΩΝ ΜΕΓΕΘΩΝ
Μαθηματικά προσανατολισμού Β΄ Λυκείου
ΟΜΑΔΕΣ Δημιουργία Ομάδων
Επίλυση Προβλημάτων με Αναζήτηση
Προβλήματα Ικανοποίησης Περιορισμών
Ψηφιακή Επεξεργασία Εικόνας
Δένδρα Δένδρο είναι ένα συνεκτικό άκυκλο γράφημα. Δένδρο Δένδρο Δένδρο
Μέγιστη ροή Κατευθυνόμενο γράφημα 12 Συνάρτηση χωρητικότητας
Ενότητα 10: Καμπύλες κόστους
ΜΠΣ ΠΡΑΣΙΝΗ ΕΝΕΡΓΕΙΑ ΤΜΗΜΑ ΗΜ&ΤΥ
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων
Κεφάλαιο 7: Διαδικτύωση-Internet Μάθημα 7.9: Δρομολόγηση
Τ.Ε.Ι. Κεντρικής Μακεδονίας Σ.Τ.Ε.Φ. – Τμήμα Μηχανικών Πληροφορικής
Δισδιάστατα Σήματα και Συστήματα #1
Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Μη Γραμμικός Προγραμματισμός
Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας
Ευθύγραμμη ομαλή κίνηση
Μεταγράφημα παρουσίασης:

ΤΜΗΥΠ / ΕΕΣΤ1 Μάθημα 8 ο Ανίχνευση Ακμών

ΤΜΗΥΠ / ΕΕΣΤ2 Εισαγωγή (1)  Οι ακμές είναι βασικά χαρακτηριστικά της εικόνας Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή: Προς το παρόν δεν υπάρχει ακόμα ένας ευρέως αποδεκτός ορισμός της ακμής. Εδώ θα θεωρούμε ως ακμή: «Το σύνορο μεταξύ δύο ομοιογενών περιοχών με διαφορετική φωτεινότητα.»

ΤΜΗΥΠ / ΕΕΣΤ3 Εισαγωγή (2) Τεχνικές ανίχνευσης ακμών  Τοπικές: χρησιμοποιούν την πληροφορία σε μία γειτονιά της εικόνας  Καθολικές: χρησιμοποιούν όλη την πληροφορία της εικόνας

ΤΜΗΥΠ / ΕΕΣΤ4 Διαφορικοί τελεστές (1) Η κλίση (gradient) της εικόνας είναι το πλάτος αυτού του διανύσματος παρέχει πληροφορία για τις μεταβολές της φωτεινότητας το πλάτος αυτού του διανύσματος παρέχει πληροφορία για τις μεταβολές της φωτεινότητας

ΤΜΗΥΠ / ΕΕΣΤ5 Διαφορικοί τελεστές (2) Η παράγωγος 2ης τάξης έχει μηδενισμούς στις περιοχές των ακμών. Ο τελεστής Laplace ορίζεται ως ή προσεγγιστικά Ο τελεστής Laplace είναι ευαίσθητος στον θόρυβο και δεν ανιχνεύει την διεύθυνση των ακμών.

ΤΜΗΥΠ / ΕΕΣΤ6 Μάσκες ακμών (1) Η διεύθυνση μίας ακμής μπορεί να περιγραφεί από την γωνία Η διεύθυνση μίας ακμής μπορεί να περιγραφεί από την γωνία Μπορούμε να εκτιμήσουμε την κλίση, προς συγκεκριμένες διευθύνσεις, χρησιμοποιώντας τελεστές κλίσης Μπορούμε να εκτιμήσουμε την κλίση, προς συγκεκριμένες διευθύνσεις, χρησιμοποιώντας τελεστές κλίσης όπου x είναι μία γειτονιά όπου x είναι μία γειτονιά και w είναι μάσκες. και w είναι μάσκες.

ΤΜΗΥΠ / ΕΕΣΤ7 Μάσκες ακμών (2) Roberts Prewitt Sobel

ΤΜΗΥΠ / ΕΕΣΤ8 Μάσκες ακμών (3) Η εφαρμογή των μασκών γίνεται σε κάθε pixel της εικόνας. Η μάσκα η οποία δίνει την μεγαλύτερη έξοδο Η εφαρμογή των μασκών γίνεται σε κάθε pixel της εικόνας. Η μάσκα η οποία δίνει την μεγαλύτερη έξοδο καθορίζει την κατεύθυνση της ακμής στο συγκεκριμένο σημείο. Εάν καμία μάσκα δεν δίνει αρκετά μεγάλη έξοδο, τότε δεν υπάρχει ακμή στο σημείο. καθορίζει την κατεύθυνση της ακμής στο συγκεκριμένο σημείο. Εάν καμία μάσκα δεν δίνει αρκετά μεγάλη έξοδο, τότε δεν υπάρχει ακμή στο σημείο.

ΤΜΗΥΠ / ΕΕΣΤ9 Μάσκες ακμών (4) Αρχική εικόνα Μάσκα Sobel Μάσκα Prewitt

ΤΜΗΥΠ / ΕΕΣΤ10 Κατωφλίωση ακμών (1) Για να αποφασίσουμε εάν ένα pixel είναι μέρος μίας ακμής ή του φόντου, μπορούμε να κατωφλιώσουμε ως εξής Για να αποφασίσουμε εάν ένα pixel είναι μέρος μίας ακμής ή του φόντου, μπορούμε να κατωφλιώσουμε ως εξής Το κατώφλι Τ μπορεί να είναι ολικό ή τοπικό. Το Τ μπορεί να εκτιμηθεί από το ιστόγραμμα του Ε ή με κάποιον αλγόριθμο εύρεσης βέλτιστου κατωφλίου.

ΤΜΗΥΠ / ΕΕΣΤ11 Κατωφλίωση ακμών (2) Έξοδος της μάσκας Sobel για διαφορετικά κατώφλια.

ΤΜΗΥΠ / ΕΕΣΤ12 Ένωση ακμών (1) Οι προηγούμενες τεχνικές ανιχνεύουν τα pixels της εικόνας τα οποία αποτελούν μέρος μίας ακμής. Αυτό δεν σημαίνει ότι το σύνολο αυτών των pixels σχηματίζει την ακμή (διακοπές λόγω θορύβου, ανομοιόμορφης φωτεινότητας κ.α.) Οι προηγούμενες τεχνικές ανιχνεύουν τα pixels της εικόνας τα οποία αποτελούν μέρος μίας ακμής. Αυτό δεν σημαίνει ότι το σύνολο αυτών των pixels σχηματίζει την ακμή (διακοπές λόγω θορύβου, ανομοιόμορφης φωτεινότητας κ.α.) Δύο βασικά κριτήρια για την ένωση των ακμών είναι: 1. Η τιμή του διαφορικού τελεστή στα σημεία ενδιαφέροντος και η μεταξύ τους σχέση. 2. Η κατεύθυνση του διανύσματος κλίσης στα σημεία ενδιαφέροντος και η μεταξύ τους σχέση.

ΤΜΗΥΠ / ΕΕΣΤ13 Ένωση ακμών (2) Το σημείο που ανήκει στην γειτονιά είναι μέρος μιας ακμής εάν έχει παρόμοιο πλάτος Το σημείο που ανήκει στην γειτονιά είναι μέρος μιας ακμής εάν έχει παρόμοιο πλάτος παρόμοια κλίση παρόμοια κλίση και τα πλάτη είναι σχετικά μεγάλα και τα πλάτη είναι σχετικά μεγάλα

ΤΜΗΥΠ / ΕΕΣΤ14 Ένωση ακμών (3) Αλγόριθμοι παρακολούθησης ακμών  Απλός: Είναι εξαντλητικός αλγόριθμος εύρεσης. Παράγει σχετικά μικρά τμήματα ακμών επειδή τερματίζει όταν παρουσιάζονται έστω και μικρά κενά.  Αναζήτησης γραφήματος: Μετατρέπει την εικόνα σε προσανατολισμένο γράφημα. Τα στοιχεία ακμής στις θέσεις x i θεωρούνται κόμβοι του γραφήματος. Έτσι οι αναγνωρισμένες ακμές αντιστοιχούν στις διαδρομές του γραφήματος. Μειονέκτημά του είναι ότι κατά τη διαδικασία της αναζήτησης πρέπει να κρατούνται στοιχεία για όλες τις τρέχουσες καλύτερες διαδρομές, τα αποτελέσματά του όμως είναι καλύτερα από αυτά του απλού. Μειονέκτημά του είναι ότι κατά τη διαδικασία της αναζήτησης πρέπει να κρατούνται στοιχεία για όλες τις τρέχουσες καλύτερες διαδρομές, τα αποτελέσματά του όμως είναι καλύτερα από αυτά του απλού.

ΤΜΗΥΠ / ΕΕΣΤ15 Ένωση ακμών (4)  Δυναμικού προγραμματισμού: Διασπά το πρόβλημα σε Ν ανεξάρτητα βήματα βελτιστοποίησης. Και σ’ αυτή την περίπτωση τα αποτελέσματα είναι καλύτερα σε σχέση με αυτά του απλού.  Mετασχηματισμός Hough: Είναι μέθοθος ανίχνευσης παραμετρικών καμπυλών οι οποίες διασυνδέουν μεμονωμένα στοιχεία ακμής. Στην ειδικότερη περίπτωση βρίσκει το σύνολο των ευθύγραμμων τμημάτων που αναπαριστούν τμήματα ακμών. Είναι μέθοθος ανίχνευσης παραμετρικών καμπυλών οι οποίες διασυνδέουν μεμονωμένα στοιχεία ακμής. Στην ειδικότερη περίπτωση βρίσκει το σύνολο των ευθύγραμμων τμημάτων που αναπαριστούν τμήματα ακμών.

ΤΜΗΥΠ / ΕΕΣΤ16 Μετασχηματισμός Hough (1) Ο μετασχηματισμός Hough χρησιμοποιεί παραμετρική περιγραφή των γεωμετρικών σχημάτων. Η παραμετρική περιγραφή της ευθείας είναι

ΤΜΗΥΠ / ΕΕΣΤ17 Μετασχηματισμός Hough (2)  Σχηματίζουμε την παραμετρική μήτρα, με και.  Για κάθε υπολογίζουμε την για κάθε.  Αυξάνουμε τα αντίστοιχα στοιχεία της μήτρας:  Αφού σαρωθεί όλη η εικόνα εφαρμόζουμε κατώφλι στην μήτρα και σχηματίζουμε τις αντίστοιχες ευθείες.

ΤΜΗΥΠ / ΕΕΣΤ18 Μετασχηματισμός Hough (3) Το παραπάνω μοντέλο έχει πρόβλημα όταν η ευθεία είναι κατακόρυφη. Αντ’ αυτού χρησιμοποιούμε την πολική περιγραφή: Ο μετασχηματισμός Hough έχει πολυπλοκότητα Ο(Ν), αντί της Ο(Ν 3 ) της απλής μεθόδου.

ΤΜΗΥΠ / ΕΕΣΤ19 Μετασχηματισμός Hough (4) Αρχική εικόνα Έξοδος μάσκας Έξοδος Hough