Further Pure 1 Roots of Equations. Properties of the roots of cubic equations Cubic equations have roots α, β, γ (gamma) az 3 + bz 2 + cz + d = 0 a(z.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Click here to start Important !: You have to enable macros for this game (Tools ->Macros -> Security -> «medium»).
Advertisements

Γειά σας. Say: take a pencil. Πάρε ένα μολύβι. Nick, give me my book.
Σε λίγο θα μπείτε στον κόσμο μιας μαγείας.. After a moment you will enter the world of magic...
Translation Practice. I Τα Fractal είναι μία τάξη πολύπλοκων γεωμετρικών μορφών που έχουν την ιδιότητα της αυτοομοιότητας. Τα Fractal διαφέρουν από τα.
Γειά σας.
Lesson 3a: Basic expressions JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
ΟΡΓΑΝΙΣΜΟΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΙΔΙΟΚΤΗΣΙΑΣ “Preparing Europe for Global Competition” THE NETWORK : The Patent and Trademark Offices.
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
Install WINDOWS 7 Κουτσικαρέλης Κων / νος Κουφοκώστας Γεώργιος Κάτσας Παναγιώτης Κουνάνος Ευάγγελος Μ π ουσάη Ελισόν Τάξη Β΄ Τομέας Πληροφορικής 2014 –’15.
Lesson 6c: Around the City I JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Lesson 3b: More basic words JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Ενδείξεις κυστεκτομής σε μη μυοδιηθητικό καρκίνο ουροδόχου κύστης Αθανάσιος Γ. Παπατσώρης Επ. Καθηγητής Ουρολογίας Β’ Ουρολογική Κλινική Πανεπιστημίου.
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
Ψηφιακά Παιχνίδια και μάθηση Δρ. Νικολέτα Γιαννούτσου Εργαστήριο Εκπαιδευτικής Τεχνολογίας.
Διαχείριση Διαδικτυακής Φήμης! Do the Online Reputation Check! «Ημέρα Ασφαλούς Διαδικτύου 2015» Ε. Κοντοπίδη, ΠΕ19.
Introduction to Latent Variable Models. A comparison of models X1X1 X2X2 X3X3 Y1Y1 δ1δ1 δ2δ2 δ3δ3 Model AModel B ξ1ξ1 X1X1 X2X2 X3X3 δ1δ1 δ2δ2 δ3δ3.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
Chapter 1(a) What I expect you to know…. Vocabulary Verbs: ̉έστι(ν), λέϒει, οι̉κει̂, πονει̂, ϕιλει̂, χαίρει Nouns: ο͑ α̉ργός, ο͑ ά̉νθρωπος, ο͑ αυ̉τουργός,
Προσέλκυση, δέσμευση και ανάπτυξη ικανοτήτων των Εθελοντών
Φάσμα παιδαγωγικής ανάπτυξης
JSIS E 111: Elementary Modern Greek
JSIS E 111: Elementary Modern Greek
Matrix Analytic Techniques
Υποστηρίζω την άποψη μου επιχειρηματολογώντας
JSIS E 111: Elementary Modern Greek
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
JSIS E 111: Elementary Modern Greek
GO.
Σε λίγο θα μπείτε στον κόσμο μιας μαγείας
Adjectives Introduction to Greek By Stephen Curto For Intro to Greek
Μουσενίκας Δημήτριος Βλάχος Χριστόδουλος
Εντολές Δικτύων Command Line.
(ALPHA BANK – EUROBANK – PIRAEUS BANK)
Το ιερό δισκοπότηρο της ΙΕ γλωσσολογίας
Εκπαιδευτική ρομποτική
JSIS E 111: Elementary Modern Greek
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
Solving Trig Equations
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
JSIS E 111: Elementary Modern Greek
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
ΑΠΟΣΤΑΞΗ Distillation.
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]
Let’s see where we are going
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
Find: Force on culvert in [lb/ft]
We can manipulate simple equations:
3Ω 17 V A3 V3.
3Ω 17 V A3 V3.
3Ω 17 V A3 V3.
Deriving the equations of
Variable-wise and Term-wise Recentering
JSIS E 111: Elementary Modern Greek
Find: ρc [in] from load (4 layers)
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
Erasmus + An experience with and for refugees Fay Pliagou.
Future Active/Middle Indicative
Chapter 34 Indicative of δίδωμι.
Μεταγράφημα παρουσίασης:

Further Pure 1 Roots of Equations

Properties of the roots of cubic equations Cubic equations have roots α, β, γ (gamma) az 3 + bz 2 + cz + d = 0 a(z – α)(z – β)(z – γ) = 0a = 0 This gives the identity az 3 + bz 2 + cz + d = a(z - α)(z - β)(z – γ) Multiplying out az 3 + bz 2 + cz + d = a(z – α)(z – β)(z – γ) = a(z 2 – αz – βz + αβ)(z – γ) = az 3 – a(α + β + γ)z 2 + a(αβ + αγ + βγ)z - aαβγ z2z2 -αz-αz-βz-βzαβ zz3z3 -αz2-αz2 -βz2-βz2 αβz -γ-γ-γz2-γz2 γαzβzγβzγ-αβγ

Properties of the roots of cubic equations Equating coefficients -a(α + β + γ) = b α + β + γ = -b/a a(αβ + αγ + βγ) = c αβ + αγ + βγ = c/a -aαβγ = d αβγ = -d/a Can you notice a pattern?

Properties of the roots of quartic equations Quartic equations have roots α, β, γ, δ (delta) az 4 + bz 3 + cz 2 + dz + e = 0 a(z – α)(z – β)(z – γ)(z – δ) = 0a = 0 This gives the identity az 4 + bz 3 + cz 2 + dz + e = a(z - α)(z - β)(z – γ)(z – δ) Multiplying out (try this yourself) az 4 + bz 3 + cz 2 + dz + e = a(z – α)(z – β)(z – γ)(z – δ) = a(z 2 – αz – βz + αβ)(z 2 – γz – δz + γδ) z2z2 -αz-αz-βz-βzαβ z2z2 z4z4 -αz3-αz3 -βz3-βz3 αβz 2 -γz-γz-γz3-γz3 αγz 2 βγz 2 -αβγz -δz-δz-δz3-δz3 αδz 2 βδz 2 -αβδz γδγδz 2 -αγδz-βγδzαβγδ

Properties of the roots of quartic equations = z 4 – αz 3 – βz 3 – γz 3 – δz 3 + αβz 2 + αγz 2 + βγz 2 + αδz 2 + βδz 2 + γδz 2 – αβγz – αβδz – αγδz – βγδz + αβγδ = z 4 – (α + β + γ + δ)z 3 + (αβ + αγ + βγ + αδ + βδ + γδ)z 2 – (αβγ + αβδ + αγδ + βγδ)z + αβγδ z2z2 -αz-αz-βz-βzαβ z2z2 z4z4 -αz3-αz3 -βz3-βz3 αβz 2 -γz-γz-γz3-γz3 αγz 2 βγz 2 -αβγz -δz-δz-δz3-δz3 αδz 2 βδz 2 -αβδz γδγδz 2 -αγδz-βγδzαβγδ

Properties of the roots of quartic equations Remember the a = a[z 4 – (α + β + γ + δ)z 3 + (αβ + αγ + βγ + αδ + βδ + γδ)z 2 – (αβγ + αβδ + αγδ + βγδ)z + αβγδ] = az 4 – a(α + β + γ + δ)z 3 + a(αβ + αγ + βγ + αδ + βδ + γδ)z 2 – a(αβγ + αβδ + αγδ + βγδ)z + aαβγδ Equating coefficients -a(α + β + γ + δ) = bα + β + γ + δ = -b/a = Σα a(αβ + αγ + βγ + αδ + βδ + γδ) = c αβ + αγ + βγ + αδ + βδ + γδ = c/a = Σαβ -a(αβγ + αβδ + αγδ + βγδ) = d αβγ + αβδ + αγδ + βγδ = -d/a = Σαβγ aαβγδ = e αβγδ = e/a

Example 1 The roots of the equation 2z 3 – 9z 2 – 27z + 54 = 0 form a geometric progression. Find the values of the roots. Remember that an geometric series goes a, ar, ar 2, ……….., ar (n-1) So from this we get α = a, β = ar, γ = ar 2 α + β + γ = -b/a a + ar + ar 2 = 9/2(1) αβ + αγ + βγ = c/aa 2 r + a 2 r 2 + a 2 r 3 =-27/2 (2) αβγ = -d/aa 3 r 3 = -27(3) We can now solve these simultaneous equations.

Example 1 Starting with the product of the roots equation (3). a 3 r 3 = -27 (ar) 3 = -27 ar = -3 Now plug this into equation (1) a + ar + ar 2 = 9/2 (-3/r) (-3/r)r 2 = 9/2 (-3/r) + -15/2 + -3r = 0(-9/2) r – 6r 2 = 0(×2r) 2r 2 + 5r + 2 = 0(÷-3) (2r + 1)(r + 2)= 0 r= -0.5 & -2 This gives us the arithmetic series 6, -3, 1.5 or 1.5, -3, 6

Example 1 – Alternative Algebra 2z 3 – 9z 2 – 27z + 54 = 0 This time because we know that we are going to use the product of the roots we could have the first 3 terms of the series as a/r, a, ar So from this we get α = a/r, β = a, γ = ar α + β + γ = -b/a a/r + a + ar = 9/2(1) We have ignored equation 2 because it did not help last time. αβγ = -d/aa 3 = -27(3) We can now solve these simultaneous equations.

Example 1 – Alternative Algebra Starting with the product of the roots equation (3). a 3 = -27 a = -3 Now plug this into equation (1) a/r + a + ar = 9/2 -3/r r = 9/2 (-3/r) + -15/2 + -3r = 0(-9/2) r – 6r 2 = 0(×2r) 2r 2 + 5r + 2 = 0(÷-3) (2r + 1)(r + 2)= 0 r= -0.5 & -2 This gives us the arithmetic series 6, -3, 1.5 or 1.5, -3, 6

Example 2 The roots of the quartic equation 4z 4 + pz 3 + qz 2 - z + 3 = 0 are α, -α, α + λ, α – λ where α & λ are real numbers. i) Express p & q in terms of α & λ. α + β + γ + δ = -b/a α + (-α) + (α + λ) + (α – λ) = -p/4 2α = -p/4 p = -8α αβ + αγ + αδ + βγ + βδ + γδ = c/a (α)(-α) + α(α + λ) + α(α - λ) + (-α)(α + λ) + (-α)(α - λ) + (α + λ)(α – λ)= q/4 -α 2 + α 2 + αλ + α 2 – αλ – α 2 – αλ – α 2 + αλ + α 2 – λ 2 = q/4 – λ 2 = q/4 q = -4λ 2

Properties of the roots of quintic equations This is only extension but what would be the properties of the roots of a quintic equation? az 5 + bz 4 + cz 3 + dz 2 + ez + f = 0 The sum of the roots = -b/a The sum of the product of roots in pairs = c/a The sum of the product of roots in threes = -d/a The sum of the product of roots in fours = e/a The product of the roots = -f/a