ΣΤΟΙΧΕΙΩΔΕΙΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑ.
Advertisements

Ένα παράδειγμα διαθεματικής αξιοποίησης ψηφιακών εργαλείων έκφρασης στα Μαθηματικά και στην Πληροφορική. Α. Ψαλτίδου Σ. Δουκάκης Ένα παράδειγμα διαθεματικής.
ΤΡΙΓΩΝΑ.
ΣΕΝΑΡΙΟ ΜΑΘΗΣΗΣ «Εξερευνώντας τα τρίγωνα»
Παιχνίδι γνώσεων γεωμετρία στη.
Κανονικά πολύγωνα Τουρναβίτης Στέργιος.
ΣΤΟΧΟΙ: ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΧΑΡΤΑΕΤΟΣ ΚΑΙ ΜΑΘΗΜΑΤΙΚΑ
ΜΑΘΗΜΑΤΙΚΑ ΓΕΩΜΕΤΡΙΑ.
ΘΑΛΗΣ Ο ΜΙΛΗΣΙΟΣ Από τις μαθήτριες: Αναστασούλη Μυρσίνη Γκέκα Μαρία
Γ. Ματσαρίδης, Γλωσσολόγος, M.Sc.
Τα Μαθηματικά την Αρχαία Ελλάδα.
Παραλληλόγραμμα τεστ 1 τεστ 2 ασκήσεις Φάνης Παπαδάκης
ΚΑΡΑΓΕΩΡΓΟΣ ΤΡΙΑΝΤΑΦΥΛΛΟΣ Β2 α
Π λ ύ γ ω ν α Γρηγόρης Τάσιου.
Τ ρ ί γ ω ν α Ιωάννης Τάσιου.
Στέλιος Αντωνιάδης Παρουσίαση Γεωμετρικής ερμηνείας
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΓΕΩΜΕΤΡΙΚΑ ΣΧΗΜΑΤΑ ΤΑΝΙΑ ΤΙ.
ΓΕΩΜΕΤΡΙΑ ΣΟΦ ΤΖΑ.
ΓΕΩΜΕΤΡΙΑ από την Κλ.Μπ..
Εργαστήριο Φυσικής Χημείας | Τμήμα Φαρμακευτικής Δημήτριος Τσιπλακίδης
Άσκηση 5 Το τρίγωνο με πλευρές 3,4,5 είναι ορθογώνιο. Αν πολλαπλασιάσουμε τα μήκη των πλευρών του με έναν οποιοδήποτε φυσικό αριθμό λ ( ), το τρίγωνο που.
ΕΙΣΑΓΩΓΗ: ΒΑΣΙΚΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΓΝΩΣΕΙΣ
ΤΡΙΓΩΝΑ. ΤΡΙΓΩΝΑ Το σχήμα που προκύπτει είναι το τρίγωνο ΑΒΓ Το τρίγωνο Α Β Γ Ορίζουμε τρία σημεία Α, Β, Γ πάνω στο επίπεδο 2. Ενώνουμε τα σημεία.
Θαλής ο Μιλήσιος (περ π.Χ.)
ΓΕΩΜΕΤΡΙΑ! Ισι Κου.
ΓΕΩΜΕΤΡΙΑ ΙΣ ΑΚΡΙ.
ΜΕΡΚ ΚΩΝ ΓΕΩΜΕΤΡΙΑ.
Άσκηση 4 To ισοσκελές τρίγωνο ΑΒΓ έχει πλευρά ΒΓ=8m και ύψος ΑΚ=3m
ΑΝΑΚΛΑΣΗ - ΔΙΑΘΛΑΣΗ Φυσική Γ λυκείου Θετική & τεχνολογική κατεύθυνση
Είδη και στοιχεία τριγώνων Κεφάλαιο 3ο
Η κρυφή γεωμετρία της Σχολής των Αθηνών του Ραφαέλο
Λόγος εμβαδών Όμοια τρίγωνα Όμοια πολύγωνα Τρίγωνα με Α = Α΄
Ντενίσα Λεσάι Ελένη Κοντογόνη
ΘΕΩΡΙΑ ΤΡΙΓΩΝΟΜΕΤΡΙΑΣ ΚΕΦΑΛΑΙΟ 2
Τεστ Ηλεκτροστατική. Να σχεδιάσεις βέλη στην εικόνα (α) για να δείξεις την κατεύθυνση του ηλεκτρικού πεδίου στα σημεία Ρ, Σ και Τ. Αν το ηλεκτρικό.
ΠΟΛΥΓΩΝΑ Στόχοι μαθήματος
Άσκηση 3 Το ορθογώνιο τρίγωνο ΑΒΓ με υποτείνουσα ΒΓ=10m και το τετράγωνο με πλευρά 5m, έχουν ίσα εμβαδά. Να υπολογίσετε την απόσταση του Α από την ΒΓ.
ΠΟΛΥΓΩΝΑ ΚΑΝΟΝΙΚΑ Τα πολύγωνα που έχουν πλευρές και τις γωνίες τους ίσες λέγονται πολύγωνα κανονικά.
Καθηγητής: C.V. Eπιμέλεια: G3MU05 τμήμα:Γ3 έτος:2014
ΚΥΚΛΟΣ B4XP20 Σχολικό Έτος:
Γεωμετρικές έννοιες και μετρήσεις μεγεθών
ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ ΓΙΑ ΤΑ ΜΑΘΗΜΑΤΙΚΑ ΣΤΟ ΝΗΠΙΑΓΩΓΕΙΟ
ΚΡΙΤΗΡΙΑ ΙΣΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ Γ΄ ΓΥΜΝΑΣΙΟΥ
Τι είναι η γωνιά; Γωνιά είναι το άνοιγμα μεταξύ δυο πλευρών που ενώνονται σε μια κορυφή και, μετριέται σε μοίρες. α α = 30°
Γεωμετρικές έννοιες και μετρήσεις μεγεθών (ή, διαφορετικά, αντίληψη του χώρου)
start  ΤΟ ΑΘΡΟΙΣΜΑ ΤΩΝ ΓΩΝΙΩΝ ΚΑΘΕ ΤΡΙΓΩΝΟΥ ΕΙΝΑΙ ΙΣΟ ΜΕ 180 ΜΟΙΡΕΣ  ΟΙ ΟΞΕΙΕΣ ΓΩΝΙΕΣ ΜΕ ΠΛΕΥΡΕΣ ΠΑΡΑΛΛΗΛΕΣ ΕΙΝΑΙ ΓΩΝΙΕΣ ΣΥΜΠΛΗΡΩΜΑΤΙΚΕΣ  ΟΙ.
Εξορθολογισμός της ύλης για την Γεωμετρία Α΄ & Β΄ Λυκείου Ηρακλής Νικολόπουλος Εκπαιδευτικός ΠΕ 03.
Διδασκαλία και μάθηση της έννοιας της γωνίας
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Εργασία των φοιτητών: Κοσμάς Βασίλης Ραράκου Μαρία Αγγελική
ΤΡΙΓΩΝΑ.
Ξέρουν οι μέλισσες μαθηματικά ; Για ποιο λόγο κατασκευάζουν εξαγωνικά κελιά στις κηρήθρες ; ? Βασίλης Παπαθεοδοσίου Μαθηματικός Γυμνασίου Ψαχνών.
ΠΕΡΙΜΕΤΡΟΣ ΚΑΙ ΕΜΒΑΔΟΝ ΟΡΘΟΓΩΝΙΟΥ ΠΑΡΑΛΛΗΛΟΓΡΑΜΜΟΥ
Είναι ίσα μεταξύ τους δύο τρίγωνα με 5 ζεύγη κύριων στοιχείων τους ίσα? Επιμέλεια: Κουρτέση Γεωργία - Μαθηματικός.
Συνδεσμολογία R - L Σειράς
Μια μικρή παρουσίαση Επιμέλεια : Κοσόγλου Ιορδάνης , μαθηματικού
Ε=α2 ΤΕΤΡΑΓΩΝΟ Κορυφές: Α, Β, Γ, Δ Πλευρές: ΑΒ=ΒΓ=ΓΔ=ΔΑ=α Ιδιότητες:
Δραστηριότητα - απόδειξη
ΠΟΛΥΓΩΝΑ ΣΤΗΝ ΦΥΣΗ, ΣΤΗΝ ΤΕΧΝΗ ΚΑΙ ΣΤΗΝ ΕΠΙΣΤΗΜΗ.
Εργασία 2η: Δραστηριότητα από την Α΄ Λυκείου (Γεωμετρία)
Μαθηματικά: Γεωμετρικοί τόποι
ΠΥΘΑΓΟΡΑΣ Ο ΣΑΜΙΟΣ ( πΧ)
Κλικ για επιστροφή στην ερώτηση
Η κρυφή γεωμετρία της Σχολής των Αθηνών του Ραφαέλο
ΤΡΙΓΩΝΑ.
ΣΤΟΧΟΙ: ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ
ΓΩΝΙΑ ΣΤΟΧΟΙ: Με τη συμπλήρωση του διδακτικού στόχου αυτού θα μπορείτε να: (α) δίνετε τον ορισμό της γωνίας (β) χαρακτηρίζετε γωνίες (γ) διχοτομείτε γωνία.
Η κρυφή γεωμετρία της Σχολής των Αθηνών του Ραφαέλο
Μεταγράφημα παρουσίασης:

ΣΤΟΙΧΕΙΩΔΕΙΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΟΙΧΕΙΩΔΕΙΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ ΜΑΡΙΑ ΛΟΙΖΟΥ – ΓΙΑΓΚΟΥ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ

ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ ΕΙΔΗ ΤΡΙΓΩΝΩΝ

ΕΙΔΗ ΤΡΙΓΩΝΩΝ Ως προς τις πλευρές τους Ως προς τις γωνίες τους

Ως προς τις πλευρές τους Σκαληνό Ισοσκελές Ισόπλευρο

Σκαληνό Έχει όλες τις πλευρές του μεταξύ τους άνισες Α Έχει όλες τις πλευρές του μεταξύ τους άνισες ΒΓ > ΑΒ > ΑΓ Β Γ

ΙΣΟΣΚΕΛΕΣ Έχει τις δύο πλευρές του μεταξύ τους ίσες. ΑΒ = ΑΓ Α Β Γ

ΙΣΟΠΛΕΥΡΟ Έχει και τις τρεις πλευρές του μεταξύ τους ίσες. Α Έχει και τις τρεις πλευρές του μεταξύ τους ίσες. ΑΒ = ΑΓ = ΒΓ Β Γ

Ως προς τις γωνίες του Οξυγώνιο Ορθογώνιο Αμβλυγώνιο

ΟΞΥΓΩΝΙΟ Έχει και τις τρεις γωνίες του οξείες. 0°< Α < 90° 0°< Β< 90° 0°< Γ < 90° Α Β Γ

ΟΡΘΟΓΩΝΙΟ Β Έχει μια ορθή γωνία. Α = 90° Β + Γ= 90° Α Γ

ΑΜΒΛΥΓΩΝΙΟ Έχει μια αμβλεία γωνία. Α < 90° Β + Γ = 90° Β Α Γ