ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Σχεδίαση Σ.Α.Ε: Σύγχρονες Μέθοδοι Σχεδίασης Σ.Α.Ε ΚΕΣ 01 – Αυτόματος Έλεγχος.
Advertisements

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΧΩΡΟΣ ΚΑΤΑΣΤΑΣΗΣ.
Ταλαντωσεις – Συνθεση Ταλαντωσεων – Εξαναγκασμενες Ταλαντωσεις
Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: Ανάλυση και σύνθεση ενός.
Εκπαιδευτής: Tάσος Μπούντης Τμήμα Μαθηματικών Πανεπιστήμιο Πατρών
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Laplace.
ΚΕΦΑΛΑΙΟ 2 ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ
Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
ΜΕΛΕΤΗ ΧΡΟΝΟΣΕΙΡΩΝ ΜΗ ΓΡΑΜΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΗ
Εισαγωγή στην Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ:
ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Παχατουρίδη Σάββα(676) Επιβλέπων: Σ
Ο Μετασχηματισμός Laplace και ο Μετασχηματισμός Ζ
Ευστάθεια Συστημάτων Αυτομάτου Ελέγχου:
Ηλεκτρονική Ενότητα 5: DC λειτουργία – Πόλωση του διπολικού τρανζίστορ
Σέρρες,Ιούνιος 2009 Τίτλος: Αυτόματος έλεγχος στο Scilab: Ανάπτυξη πακέτου για εύρωστο έλεγχο. Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα Επιβλέπων Καθηγητής.
Φυσική Β’ Λυκείου Κατεύθυνσης
1. Ευθύγραμμη κίνηση. Ένα σώμα κινείται πάνω σε μια ευθεία.
Φυσική κατεύθυνσης Γ’ Λυκείου Επιμέλεια –παρουσίαση χ. τζόκας
Τεστ Ηλεκτροστατική. Να σχεδιάσεις βέλη στην εικόνα (α) για να δείξεις την κατεύθυνση του ηλεκτρικού πεδίου στα σημεία Ρ, Σ και Τ. Αν το ηλεκτρικό.
ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Ανάλυση Συστημάτων Αυτομάτου Ελέγχου: Διαγράμματα Nyquist & Nichols ΚΕΣ 01 – Αυτόματος Έλεγχος.
Ερωτήσεις Σωστού - Λάθους
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
Εισαγωγή στην Ηλεκτρονική
Επιβλέπων Καθηγητής : Δρ. Σ. Τσίτσος Σπουδάστρια : Μποζίνου Ζαφειρούλα, ΑΕΜ: 1909 Σέρρες, Ιούλιος 2014 ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ.
Επανάληψη Προηγούμενου Μαθήματος
Άρτεμις Κωσταρίγκα Επίβλεψη: Ν. Καραμπετάκης ΙΟΥΝΙΟΣ 2005
Εισαγωγή στα Συστήματα Αυτομάτου Ελέγχου
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΔΙΚΤΥΩΝ.
Ενότητα: Αυτόματος Έλεγχος Συστημάτων Κίνησης
Ενότητα: Συστήματα Ελέγχου Κίνησης
Ενότητα: Ελεγκτές - Controllers
ΣΥΓΧΡΟΝΟΙ ΚΙΝΗΤΗΡΕΣ.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
Μεταβατική απόκριση ενός συστήματος δεύτερης τάξης Σχήμα 5.7 σελίδα 370.
Χρονική απόκριση και θέση των ριζών στο μιγαδικό επίπεδο Γενική μορφή συνάρτησης μεταφοράς κλειστού βρόχου Όπου Δ(s)=0 είναι η χαρακτηριστική εξίσωση του.
Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #4: Μαθηματική εξομοίωση συστημάτων στο επίπεδο της συχνότητας – Μετασχηματισμός Laplace και εφαρμογές σε ηλεκτρικά.
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
Τ.Ε.Ι. Κεντρικής Μακεδονίας ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε Τίτλος Πτυχιακής Εργασίας: Κατασκευή διδακτικού πακέτου προσομοίωσης των μηχανικών ταλαντώσεων.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτομάτου Ελέγχου ΙΙ Ενότητα #4: Ευστάθεια Συστημάτων Κλειστού Βρόχου.
Πτυχιακή εργασία : Σχεδίαση γραμμικών στοιχειοκεραιών με τη χρήση εξελικτικών αλγορίθμων Της σπουδάστριας : Χοροζάνη Αναστασίας Επιβλέπων Καθηγητής : Δρ.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 8 η Διάλεξη ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΧΡΗΣΗΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΤΩΝ ΡΙΖΩΝ Το σύστημα ελέγχου.
Συστήματα Αυτομάτου Ελέγχου ΙΙ
Βολογιαννίδης Σταύρος
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Κατασκευή πακέτου προσομοίωσης σε Matlab της κυκλικής.
ΜΕΘΟΔΟΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΣΕΡΡΕΣ, Ακαδημαϊκό έτος 2002 – 2007
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι
Ένατο μάθημα Ψηφιακά Ηλεκτρονικά.
Συστήματα Αυτομάτου Ελέγχου ΙΙ
ΣΑΕ κλειστού βρόχου (feedback – closed loop systems)
ΑΣΥΓΧΡΟΝΟΙ ΚΙΝΗΤΗΡΕΣ.
ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΓΡΑΜΜΑΤΩΝ BODE ΜΕΤΡΟΥ ΚΑΙ ΦΑΣΗΣ
Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα
Συστήματα Αυτομάτου Ελέγχου II
Θεωρούμε σχεδόν ιδανική TDR μορφή για είσοδο και γραμμή μεταφοράς με συγκεντρωτικές ασυνέχειες στο κέντρο της που εμφανίζονται ως παράλληλη χωρητικότητα.
ΜΗΧΑΝΙΚΗ ΣΤΕΡΕΟΥ ΣΩΜΑΤΟΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Ανάπτυξη εκπαιδευτικής εφαρμογής.
ΤΑΛΑΝΤΩΣΕΙΣ.
ΦΑΣΗ φ ΤΗΣ ΑΠΛΗΣ ΑΡΜΟΝΙΚΗΣ ΤΑΛΑΝΤΩΣΗΣ
ΤΑΛΑΝΤΩΣΕΙΣ.
Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Έλεγχος Ηλεκτρικών Μηχανών με την χρήση διακοπτικών κυκλωμάτων DC/DC
ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ
Σεραφείμ Καραμπογιάς Τι είναι σήμα;
Περιγραφή: Ενισχυτής audio με το LM358
Ένα συν ένα ίσον τέσσερα; Δημήτρης Τσαούσης
Μεταγράφημα παρουσίασης:

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΕΠΙΚΟΙΝΩΝΙΩΝ ΑΝΑΛΥΣΗ ΓΕΡΑΝΟΥ ΧΡΗΣΙΜΟΠΟΙΩΝΤΑΣ ΤΕΧΝΙΚΗ ΚΛΑΣΙΚΟΥ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΜΕ ΧΡΗΣΗ ΤΟΥ MATLAB ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Άννα Κελεπούρη

ΠΕΡΙΓΡΑΦΗ ΤΟΥ ΜΟΝΤΕΛΟΥ ΤΟΥ ΓΕΡΑΝΟΥ Το πρόβλημα του γερανού είναι ουσιαστικά το πρόβλημα της μεταφοράς ενός φορτίου, το οποίο κρέμεται από ένα καροτσάκι με τη βοήθεια ενός σχοινιού.

ΣΤΟΧΟΙ ΤΗΣ ΜΕΛΕΤΗΣ Το καροτσάκι να βρίσκεται πάντα σε μια επιθυμητή θέση ανάλογα με την είσοδο που δίνεται στο σύστημα. Το φορτίο θα πρέπει να σταθεροποιείται σε κατακόρυφη θέση. Το σύστημα θα πρέπει να παρουσιάζει σταθερή συμπεριφορά κάτω από διάφορες ανεπιθύμητες συνθήκες λειτουργίας όπως οι αλλαγές των αρχικών παραμέτρων και ο θόρυβος.

ΜΑΘΗΜΑΤΙΚΟ ΜΟΝΤΕΛΟ ΤΟΥ ΓΕΡΑΝΟΥ Το σύστημα μας περιγράφεται από μία διανυσματική κατάσταση x(t)=col(x1(t),x2(t),x3(t),x4(t)) όπου: x1(t): η θέση του βαγονιού x2(t): η ταχύτητα του βαγονιού x3(t): η γωνία του φορτίου x4(t): η γωνιακή ταχύτητα του φορτίου Στο βαγόνι εφαρμόζεται μία ελεγχόμενη δύναμη F, η οποία είναι παράλληλη προς τις ράγες και παράγεται από μία DC μηχανή ελέγχου.

ΟΙ ΕΞΙΣΩΣΕΙΣ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ

OI ΠΑΡΑΜΕΤΡΟΙ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ

TO ΜΟΝΤΕΛΟ ΣΧΕΔΙΑΣΜΕΝΟ ΣΤΟ SIMULINK

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΑΙ ΕΥΣΤΑΘΕΙΑ Το σύστημα περιγράφεται στο χώρο των καταστάσεων από τις ακόλουθες εξισώσεις: όπου x(t) είναι το n-διάστατο διάνυσμα κατάστασης, u(t) είναι το m-διάστατο διάνυσμα εισόδου και y(t) είναι το p-διάστατο διάνυσμα εξόδου. Ένα σύστημα είναι ευσταθές αν όλοι οι πόλοι του συστήματος βρίσκονται στο αρνητικό μιγαδικό ημιεπίπεδο.

ΓΡΑΜΜΙΚΟΠΟΙΗΣΗ ΤΟΥ ΜΟΝΤΕΛΟΥ Το μοντέλο μας είναι ένα μη γραμμικό σύστημα διαφορικών εξισώσεων στο πεδίο του χρόνου. Για να μπορέσουμε να το μελετήσουμε θα πρέπει να το γραμμικοποιήσουμε και να το «φέρουμε» στο χώρο των καταστάσεων. Η εντολή που χρησιμεύει για την γραμμικοποίηση του μοντέλου είναι η linmod. Δίνοντας την εντολή στο MatLab [A,B,C,D]=linmod(‘geranos_nonlinear’) θα πάρουμε σαν αποτέλεσμα τέσσερις πίνακες:

ΑΣΤΑΘΕΙΑ ΑΝΟΙΚΤΟΥ ΣΥΣΤΗΜΑΤΟΣ Έχουμε τέσσερις εξόδους οι οποίες είναι: x1: η θέση του βαγονιού x2: η ταχύτητα του βαγονιού x3: η γωνία του φορτίου x4: η γωνιακή ταχύτητα του φορτίου

ΠΟΛΟΙ ΤΟΥ ΣΥΣΤΗΜΑΤΟΣ Το κριτήριο ευστάθειας στο ανοικτό σύστημα δεν εκπληρώνεται αφού δεν βρίσκονται όλοι οι πόλοι στο αρνητικό μιγαδικό ημιεπίπεδο. Παρατηρούμε ότι ένας πόλος βρίσκεται στο μηδέν.

Βλέπουμε πως το σύστημα είναι οριακά ασταθές καθώς στις δύο εξόδους (γωνία και γωνιακή ταχύτητα) έχουμε ταλαντώσεις. Άρα πρέπει να βρεθεί ελεγκτής έτσι ώστε το σύστημα που θα προκύψει να είναι ευσταθές.

ΤΕΧΝΙΚΗ ΕΛΕΓΧΟΥ Η τεχνική ελέγχου που εφαρμόστηκε είναι ο γραμμικός έλεγχος με ανατροφοδότηση. Η ανατροφοδότηση αναφέρεται στα κλειστά συστήματα όπου η είσοδός του u(t) είναι συνάρτηση της εξόδου του y(t). Σε ένα σύστημα αυτομάτου ελέγχου το σήμα εισόδου u(t) δεν παράγεται απ’ ευθείας από μία γεννήτρια, αλλά είναι έξοδος ενός πρόσθετου συστήματος που ονομάζουμε ελεγκτή.

ΕΠΑΝΑΤΟΠΟΘΕΤΗΣΗ ΠΟΛΩΝ Για να δημιουργήσουμε ένα ευσταθές σύστημα πρέπει να κάνουμε μία επανατοποθέτηση των πόλων στα σημεία που εμείς θέλουμε να βρίσκονται. Άρα θα τοποθετήσουμε τις τέσσερις εξόδους μας σε αρνητική ανατροφοδότηση με την είσοδο του συστήματος. Το αρχικό σύστημα χωρίς ανατροφοδότηση.

Το κλειστό σύστημα με ανατροφοδότηση. Στο νέο κλειστό σύστημα η είσοδος είναι η επιθυμητή θέση που θέλουμε να έρθει το σύστημα (η οποία αφαιρείται από την πραγματική που βρίσκεται το βαγόνι). Το κλειστό σύστημα με ανατροφοδότηση.

Παρατηρούμε ότι στο κλειστό σύστημα έχουν προστεθεί στην ανατροφοδότηση τέσσερις ελεγκτές ένας σε κάθε έξοδο του συστήματος. Οι τέσσερις ελεγκτές ενημερώνονται για τις τιμές τους από την εντολή place, ώστε να αναπροσαρμόζουν το σήμα εισόδου και να οδηγούν το σύστημα σε ευστάθεια.

ΤΟ ΝΈΟ ΕΥΣΤΑΘΕΣ ΣΥΣΤΗΜΑ Δίνοντας στην place την επιθυμητή τοποθέτηση των πόλων στα σημεία: -0.1 -5.6 -1 -1.1 επιστρέφει τις τέσσερις τιμές των ελεγκτών: 0.1703 -5.7118 -21.9400 -17.0328 Βλέπουμε πως όλοι οι πόλοι του συστήματος βρίσκονται στο αρνητικό μιγαδικό ημιεπίπεδο.

Παρατηρούμε την σταθερότητα του συστήματος που προκύπτει με τη βοήθεια του ελεγκτή που επιλέξαμε.

ΑΛΛΑΓΗ ΠΑΡΑΜΕΤΡΩΝ ΚΑΙ ΑΠΟΚΡΙΣΗ ΣΥΣΤΗΜΑΤΟΣ Θεωρήθηκε ότι η επιθυμητή κίνηση του γερανού θα ήταν να μετακινηθεί από τη θέση 0 στη θέση 1 κατά τη χρονική στιγμή 0 sec και από τη θέση 1 στη θέση 0 κατά τη χρονική στιγμή 50 sec. Δοκιμάζονται διάφορες καταστάσεις των παραμέτρων: Ml [Kg]: Μάζα του φορτίου l [m]: Μήκος του σχοινιού Περιμένουμε πως όσο μεγαλώνουν οι τιμές αυτών των παραμέτρων η ευστάθεια του συστήματος επιτυγχάνεται όλο και πιο δύσκολα, ενώ υπάρχει και ένα ανώτατο όριο ανοχής που αν ξεπεραστεί το σύστημα διαλύεται.

Ml = 1.5 kgr, l = 2 m. Αρχικές τιμές του συστήματος Θέση του βαγονιού Ταχύτητα βαγονιού

Γωνία του φορτίου Γωνιακή ταχύτητα Παρατηρούμε ότι υπάρχει ομαλή και σχετικά γρήγορη σταθεροποίηση της θέσης του γερανού, καθώς και των υπολοίπων παραμέτρων του.

Ml = 1.5 kgr, l = 6 m. Μεγαλύτερο μήκος σχοινιού Θέση του βαγονιού Ταχύτητα βαγονιού

Γωνία του φορτίου Γωνιακή ταχύτητα Παρατηρούμε ότι το πλάτος των ταλαντώσεων μειώθηκε αλλά ο χρόνος σταθεροποίησης σχεδόν διπλασιάστηκε, οπότε η απόκριση δεν είναι αποδεκτή.

Μέσο μήκος σχοινιού με αρκετά μεγάλο φορτίο Ml = 300 kgr, l = 2 m. Μέσο μήκος σχοινιού με αρκετά μεγάλο φορτίο Θέση του βαγονιού Ταχύτητα βαγονιού

Γωνία του φορτίου Γωνιακή ταχύτητα Παρατηρούμε ότι για μεγάλες τιμές φορτίου ο χρόνος σταθεροποίησης αυξάνει, ενώ οι μικρές ταλαντώσεις στη γωνία του φορτίου είναι αναγκαίος συμβιβασμός.

Μεγαλύτερο μήκος σχοινιού με αρκετά μεγάλο φορτίο Ml = 100 kgr, l = 3 m. Μεγαλύτερο μήκος σχοινιού με αρκετά μεγάλο φορτίο Θέση του βαγονιού Ταχύτητα βαγονιού

Γωνία του φορτίου Γωνιακή ταχύτητα Παρατηρούμε μια ικανοποιητική συμπεριφορά σε μια πιο ρεαλιστική εφαρμογή.

ΑΝΟΧΗ ΣΥΣΤΗΜΑΤΟΣ ΣΤΟ ΘΟΡΥΒΟ Η εισαγωγή θορύβου στο σύστημά μας έγινε προσθέτοντας το block noise ratio στις επαφές ανατροφοδότησης των ελεγκτών με το σύστημα. Το noise power στο parameters κάθε block καθορίζει την ισχύ του θορύβου.

Εισαγωγή θορύβου στον ελεγκτή για τη θέση του βαγονιού Θέση του γερανού Χωρίς θόρυβο Με θόρυβο ισχύος 0.1 W

Γωνία του φορτίου Χωρίς θόρυβο Με θόρυβο ισχύος 0.1 W Η είσοδος θορύβου πριν από τον ελεγκτή της θέσης του γερανού επηρεάζει σημαντικά την απόδοση του συστήματος.

ΤΑΥΤΟΧΡΟΝΗ ΕΙΣΑΓΩΓΗ ΘΟΡΥΒΟΥ Noise power x1: 0.1 Noise power x2: 0.01 Noise power x3: 0.1 Noise power x4: 0.1 Θέση του βαγονιού Ταχύτητα βαγονιού

Γωνία του φορτίου Γωνιακή ταχύτητα Η ισχύς του θορύβου είναι τέτοια που να μην επιτρέπει σχεδόν κανένα συμπέρασμα. Αν προσπαθήσουμε να αυξήσουμε το θόρυβο σε όλους τους ελεγκτές τα αποτελέσματα χειροτερεύουν αισθητά.

ΜΕΙΩΣΗ ΘΟΡΥΒΟΥ Noise power x1: 0.01 Noise power x2: 0.001 Θέση του βαγονιού Ταχύτητα βαγονιού

Γωνία του φορτίου Γωνιακή ταχύτητα Ο θόρυβος διατηρείται σε ανεκτά επίπεδα, αλλά η απόδοση του συστήματος εξακολουθεί να επηρεάζεται σημαντικά.

ΣΥΜΠΕΡΑΣΜΑΤΑ Περιγράφηκε το πρόβλημα του κινούμενου γερανού που μεταφέρει φορτίο. Με βάση τις αρχές αυτομάτου ελέγχου, μελετήθηκε το μοντέλο που προέκυψε με την εισαγωγή ανάδρασης στο σύστημα. Βρέθηκαν οι τιμές των ελεγκτών που δίνουν έναν ικανοποιητικά σταθερό έλεγχο της κίνησης του γερανού. Ελέγχθηκαν οι επιδράσεις στο σύστημα από την αλλαγή βασικών παραμέτρων του, όπως είναι η μάζα του φορτίου ή το μήκος του σχοινιού που φέρει το φορτίο. Επιχειρήσαμε να εισάγουμε θόρυβο στο σύστημα για να δούμε την συμπεριφορά του σε πραγματικές συνθήκες.

ΕΥΧΑΡΙΣΤΩ ΓΙΑ ΤΗ ΒΟΗΘΕΙΑ ΣΕ ΟΛΗ ΤΗ ΔΙΑΡΚΕΙΑ ΑΥΤΗΣ ΤΗΣ ΕΡΓΑΣΙΑΣ ΤΟΝ ΕΠΙΒΛΕΠΟΝΤΑ ΚΑΘΗΓΗΤΗ ΤΗΣ ΠΤΥΧΙΑΚΗΣ: Δρ. Σταύρο Βολογιαννίδη

ΕΥΧΑΡΙΣΤΩ ΓΙΑ ΤΗΝ ΠΡΟΣΟΧΗ ΣΑΣ !