τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Γειά σας.
Advertisements

WRITING TEACHER ELENI ROSSIDOU ©Υπουργείο Παιδείας και Πολιτισμού.
Further Pure 1 Roots of Equations. Properties of the roots of cubic equations Cubic equations have roots α, β, γ (gamma) az 3 + bz 2 + cz + d = 0 a(z.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
Παρεμβολή (Interpolation)
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
 Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.  Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας.
Time Management Matrix Assignment Submitted By Safwan Zubair October 21, 2013 BUS Contemporary Business Practice Professor Nankin.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
Lesson 1a: Let’s Get Started JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Διαχείριση Διαδικτυακής Φήμης! Do the Online Reputation Check! «Ημέρα Ασφαλούς Διαδικτύου 2015» Ε. Κοντοπίδη, ΠΕ19.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
Μαθαίνω με “υπότιτλους”
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Αναπαράσταση αριθμών στον υπολογιστή Σφάλματα
Ερωτήσεις –απαντήσεις Ομάδων Εργασίας
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Φάσμα παιδαγωγικής ανάπτυξης
Jane Austen Pride and Prejudice (περηφάνια και προκατάληψη)
JSIS E 111: Elementary Modern Greek
Class X: Athematic verbs II
JSIS E 111: Elementary Modern Greek
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
GO.
ΟΡΓΑΝΩΣΗ ΑΘΛΗΤΙΚΗΣ ΕΓΚΑΤΑΣΤΑΣΗΣ
SANITARY AND STORM SEWER DESIGN A Direct Algebraic Solution
Example Rotary Motion Problems
Το ιερό δισκοπότηρο της ΙΕ γλωσσολογίας
ECTS-DS Labels Selection 2011 Αθήνα, 28/11/2011
Δικτυώματα (Δικτυωτοί Φορείς)
Εκπαιδευτική ρομποτική
Solving Trig Equations
Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: σ1 [kPa] for CD test at failure
Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]
Find: σ’v at d=30 feet in [lb/ft2]
Financial Market Theory
ΜΕΤΑΦΡΑΣΗ ‘ABC of Selling’. ΤΟ ΑΛΦΑΒΗΤΑΡΙ ΤΩΝ ΠΩΛΗΣΕΩΝ
Find: Force on culvert in [lb/ft]
Τεχνολογία & εφαρμογές μεταλλικών υλικών
We can manipulate simple equations:
3Ω 17 V A3 V3.
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
Law of Sine Chapter 8.2.
3Ω 17 V A3 V3.
3Ω 17 V A3 V3.
Deriving the equations of
Variable-wise and Term-wise Recentering
Δοκοί Διαγράμματα Τεμνουσών Δυνάμεων και Καμπτικών Ροπών
Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E
Find: ρc [in] from load (4 layers)
Κόστους –Όγκου – Κέρδους
Κοστολόγηση κατά Φάση Τέταρτο Κεφάλαιο
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
CPSC-608 Database Systems
Erasmus + An experience with and for refugees Fay Pliagou.
Class X: Athematic verbs II © Dr. Esa Autero
Entry 27 – Starter Copy and simplify
Trigonometry – Sine & Cosine – Angles – Demonstration
Μεταγράφημα παρουσίασης:

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] Clay 30 45 60 D) 75 CD test Find the cohesion, c, in pounds per square feet. [pause] In this problem, --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] Clay 30 45 60 D) 75 CD test we are provided the major and minor principle stress values at failure, for two triaxial tests, --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] Clay 30 45 60 D) 75 CD test And we know that the soil is a clay, in the consolidated, drained condition. σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] Clay 30 45 60 D) 75 CD test In problems like this one, --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] 30 45 60 D) 75 the stress values are plotted, a semi circle is drawn, --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] 30 45 60 D) 75 the cohesion is identified, --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] 30 45 60 D) 75 And the rupture line is traced. The rupture line passes through the cohesion point and is tangent to the semicircle. σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] 30 45 60 D) 75 φ Also, the friction angle can be determined from the slope of the rupture line. σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] 30 45 60 D) 75 φ However, we don’t always know the cohesion, --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] 30 45 60 D) 75 and may need data from a second test. σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] 30 45 60 D) 75 In this case, the rupture line is a line which is tangent to both semicircles, --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] 30 45 60 D) 75 and the cohesion, c is determined last. c σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] 30 45 60 D) 75 Also, for a multiple choice problem, --- c σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] 30 45 60 D) 75 it can be helpful to consider the possible solutions while solving the problem. We’ll see how this works as we solve this problem. c σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] Back to our problem, --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] For the first test, the confining stress is plotted, --- σ [lb/ft2] 400

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] and the axial stress is plotted, --- σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] and the two are connected with a semicircle. σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] For now, let’s assume the cohesion is zero and draw out our triangle using points from the origin, σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] center of the semicircle, σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] and point of tangency. σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] --- σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] The friction angle is identified, --- φ σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] and can be computed using --- c=0 φ σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] φ=sin-1 σ1-σ3 σ1+σ3 the arcsine of the radius of the semicircle, --- c=0 φ σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] φ=sin-1 σ1-σ3 σ1+σ3 divided by the distance to the center of the semicircle, --- c=0 φ σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] φ=sin-1 σ1-σ3 σ1+σ3 φ=sin-1 r x represented by the letters, --- c=0 φ σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] x σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] φ=sin-1 σ1-σ3 σ1+σ3 φ=sin-1 r x x [pause] x=circle center c=0 φ x σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] r x σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] φ=sin-1 σ1-σ3 σ1+σ3 φ=sin-1 r x and r. [pause] r x=circle center c=0 r=circle radius φ x σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] r x σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] φ=sin-1 σ1-σ3 σ1+σ3 only valid for c=0 φ=sin-1 r x However these equation for the friction angle only apply when the cohesion is zero. r x=circle center c=0 r=circle radius φ x σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] r c x φ only valid for c=0 r φ=sin-1 r x Considering the latter equation, we note that this equation is --- c>0 r x=circle center r=circle radius c φ x σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] r c x φ only valid for c=0 r Specific case of general equation only valid for c=0 φ=sin-1 r x a specific case of a larger, more general equation --- c>0 r x=circle center r=circle radius c φ x σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] r c x φ r c φ=sin-1 -tan-1 x general φ=sin-1 -tan-1 x equation x2+c2 τ [lb/ft2] Specific case of general equation only valid for c=0 φ=sin-1 r x shown here. [pause] If we shift our triangle, such that the cohesion is greater than zero, --- c>0 r x=circle center r=circle radius c φ x σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] r c x r c φ=sin-1 -tan-1 x general φ=sin-1 -tan-1 x equation x2+c2 τ [lb/ft2] We can calculate the friction angle as the difference between --- r c x σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] r c x φ=α1-α2 r c φ=sin-1 general φ=sin-1 -tan-1 x equation x2+c2 τ [lb/ft2] φ=α1-α2 two other angles, --- r c x σ [lb/ft2] 400 2,000

τ [lb/ft2] α1 σ [lb/ft2] Find: c in [lb/ft2] α1 α2 r c x φ=α1-α2 r c general φ=sin-1 -tan-1 x equation x2+c2 τ [lb/ft2] α1 φ=α1-α2 alpha 1, α1 r α2 c x σ [lb/ft2] 400 2,000

τ [lb/ft2] α2 α1 σ [lb/ft2] Find: c in [lb/ft2] α1 α2 r c x φ=α1-α2 r general φ=sin-1 -tan-1 x equation x2+c2 α2 τ [lb/ft2] α1 φ=α1-α2 and alpha 2. α1 r α2 c x σ [lb/ft2] 400 2,000

τ [lb/ft2] α2 α1 σ [lb/ft2] Find: c in [lb/ft2] α1 α2 r c x φ=α1-α2 r general φ=sin-1 -tan-1 x equation x2+c2 α2 τ [lb/ft2] α1 φ=α1-α2 So we return to our given data. α1 r α2 c x σ [lb/ft2] 400 2,000

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] We plot the the data --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] from the first test, plot the data --- σ [lb/ft2] 400 2,000

τ [lb/ft2] Find: c in [lb/ft2] σ σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] from the second test, --- σ 400 600 2,000 2,900

τ [lb/ft2] Find: c in [lb/ft2] σ σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] sketch out the rupture line,--- σ 400 600 2,000 2,900

τ [lb/ft2] ? Find: c in [lb/ft2] σ σ1 = 2,000 [lb/ft2] Test #1 Test #2 σ1 = 2,000 [lb/ft2] σ1 = 2,900 [lb/ft2] σ3 = 400 [lb/ft2] σ3 = 600 [lb/ft2] τ [lb/ft2] and identify the cohesion, even though we don’t know it’s value yet. ? c σ 400 600 2,000 2,900

τ ? Find: c in [lb/ft2] σ φ2 φ1 test 2 test 1 c 400 600 2,000 2,900 Since the slope of a line is constant, we can solve this problem by --- test 1 ? c σ 400 600 2,000 2,900

τ ? Find: c in [lb/ft2] σ φ1 = φ2 φ2 φ1 test 2 test 1 c 400 600 2,000 defining and equating a friction angle 1 with a friction angle 2. test 1 ? c σ 400 600 2,000 2,900

τ ? Find: c in [lb/ft2] σ φ1 = φ2 φ2 φ1 r c φ=sin-1 -tan-1 x x2+c2 test 2 Substituting in our general equation, --- test 1 ? c σ 400 600 2,000 2,900

τ ? Find: c in [lb/ft2] σ φ1 = φ2 φ2 φ1 r c φ=sin-1 -tan-1 x x2+c2 test 2 we now have an equation entirely in terms of the radius of each semicircle, the distance to the center of each semicircle, and the cohesion. test 1 ? c σ 400 600 2,000 2,900

τ ? Find: c in [lb/ft2] σ φ1 = φ2 φ2 φ1 r c φ=sin-1 -tan-1 x x2+c2 test 2 Keeping in mind the units of r, x and c are in pounds per square feet, the value for r1 is 800, --- test 1 ? c σ 400 600 2,000 2,900

τ ? Find: c in [lb/ft2] σ φ1 = φ2 φ2 φ1 r c φ=sin-1 -tan-1 x x2+c2 test 2 the value for x1 is 1,200, --- test 1 ? c σ 400 600 2,000 2,900

τ ? Find: c in [lb/ft2] σ φ1 = φ2 φ2 φ1 r c φ=sin-1 -tan-1 x x2+c2 test 2 The value for r2 is 1,150, --- test 1 ? c σ 400 600 2,000 2,900

τ ? Find: c in [lb/ft2] σ φ1 = φ2 φ2 φ1 r c φ=sin-1 -tan-1 x x2+c2 test 2 and the value for x2 is 1,750. test 1 ? c σ 400 600 2,000 2,900

τ ? Find: c in [lb/ft2] σ φ1 = φ2 φ2 φ1 r c φ=sin-1 -tan-1 x x2+c2 test 2 The value of c, the cohesion, is found four times in the equation. Rather than trying to solve for the cohesion directly, it would be easier --- test 1 ? c σ 400 600 2,000 2,900

τ φ1 = φ2 ? Find: c in [lb/ft2] σ φ2 φ1 test 2 test 1 c 400 600 2,000 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ φ1 test 2 to remember the left hand side and right hand side of the equation are equivalent, --- test 1 ? c σ 400 600 2,000 2,900

τ φ1 = φ2 ? Find: c in [lb/ft2] σ φ2 φ1 test 2 test 1 c 400 600 2,000 r r c c 1 -tan-1 2 sin-1 = sin-1 -tan-1 x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ φ1 c φ1 φ2 test 2 And it may be easier to search for the value of c by guessing a value, --- test 1 ? c σ 400 600 2,000 2,900

τ φ1 = φ2 ? Find: c in [lb/ft2] σ φ2 φ1 test 2 test 1 c 400 600 2,000 r r c c 1 -tan-1 2 sin-1 = sin-1 -tan-1 x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ φ1 c φ1 φ2 test 2 such as zero, and solving for--- test 1 ? c σ 400 600 2,000 2,900

τ φ1 = φ2 ? Find: c in [lb/ft2] σ φ2 φ1 test 2 test 1 c 41.81˚ 400 600 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ φ1 c φ1 φ2 test 2 friction angle 1, --- test 1 41.81˚ ? c σ 400 600 2,000 2,900

τ φ1 = φ2 ? Find: c in [lb/ft2] σ φ2 φ1 test 2 test 1 c 41.81˚ 41.08˚ r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ φ1 c φ1 φ2 test 2 and friction angle 2. test 1 41.81˚ 41.08˚ ? c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 test 2 test 1 > c 41.81˚ r r c c 1 -tan-1 2 sin-1 = sin-1 -tan-1 x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ φ1 c φ1 φ2 test 2 In this case, we note friction angle 1 is larger. This mean our next value of cohesion we evaluate should be larger than 0. > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 Now is where we turn to our possible solutions. And the question arises, what value should we next try for our cohesion? Should it be --- > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 30 pounds per square feet, --- > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 45 pounds per square feet, --- > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 60, --- > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 or 75? This is where test-taking strategy comes into play. > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 30 pounds per square feet should not be the next value chosen for c, because if phi 1 or friction angle 1, does not equal phi 2, or friction angle 2, we know phi 1 will be greater than phi 2, as it was when we set c equal to zero, and the search direction will again be for a larger value of c. > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 So by choosing c equal to 30, there is a 75% chance we’ll have to evaluate yet another value for the cohesion. > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 Same is true for if we first try c equal to 75 pounds per square feet, --- > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 there will be a 75% chance we won’t be done with the problem. > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 But if we choose an intermediate value such as c equal to 45 pounds per square feet, --- > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 or 60 pounds per square feet, there will be a 50% chance we won’t have to evaluate the expression an additional time. > test 1 41.81˚ 41.08˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 So if we evaluate the friction angles for a cohesion of 60 pounds per square feet, --- > test 1 41.81˚ 41.08˚ 60 c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 sin-1 -tan-1 2 = sin-1 -tan-1 x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 phi 1 equals 38.89 degrees, > test 1 41.81˚ 41.08˚ 60 38.89˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 sin-1 -tan-1 2 = sin-1 -tan-1 x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 and phi 2 equals 39.09 degrees. > test 1 41.81˚ 41.08˚ 60 38.89˚ 39.09˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 -tan-1 = sin-1 x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 Since phi 2 is larger, we know to use a smaller value for cohesion. Unfortunately, being particular about which of our four possible solution to first evaluate did not pay off in this instance, but it is still a good habit to get into, especially if the equations are messy, and time is of the essence. > test 1 41.81˚ 41.08˚ < 60 38.89˚ 39.09˚ c σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 We’ll next try a cohesion value of 45 pounds per square feet --- > test 1 41.81˚ 41.08˚ < 60 38.89˚ 39.09˚ c 45 σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 -tan-1 = sin-1 x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 phi 1 equals 39.62 degrees, --- > test 1 41.81˚ 41.08˚ < 60 38.89˚ 39.09˚ c 45 39.62˚ σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 -tan-1 = sin-1 x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 and phi 2 equals 39.60 degrees. > test 1 41.81˚ 41.08˚ < 60 38.89˚ 39.09˚ c 45 39.62˚ 39.60˚ σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 Since these two values are virtually the same, > test 1 41.81˚ 41.08˚ < 60 38.89˚ 39.09˚ c ~ 45 39.62˚ ~ 39.60˚ σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ φ2 φ1 30 test 2 45 60 test 1 D) 75 r r c c 1 -tan-1 2 sin-1 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 test 2 we know the cohesion is 45 pounds per square feet, --- > test 1 41.81˚ 41.08˚ < 60 38.89˚ 39.09˚ c ~ 45 39.62˚ ~ 39.60˚ σ 400 600 2,000 2,900

τ φ1 = φ2 Find: c in [lb/ft2] σ AnswerB φ2 φ1 30 test 2 45 60 test 1 sin-1 -tan-1 2 sin-1 -tan-1 = x x x2+c2 x2+c2 1 2 1 2 r2=1,150 r1=800 x1=1,200 x2=1,750 φ2 τ 30 45 60 D) 75 φ1 c φ1 φ2 AnswerB test 2 and the answer is B. > test 1 41.81˚ 41.08˚ < 60 38.89˚ 39.09˚ c ~ 45 39.62˚ ~ 39.60˚ σ 400 600 2,000 2,900

( ) ? τ [lb/ft2] γclay=53.1[lb/ft3] Index σ’v = Σ φ γ Δ d H*C σfinal Find: σ’v ρc d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ φ γ Δ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft φ=α1-α2 Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4 ( ) H*C σfinal ρcn= 1+e σinitial log ‘ σ3 Sand τ [lb/ft2] σ1 φ c=0 400 1,400