Conf.univ.dr. Georgeta Zanoschi

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Biostatistică aplicată în sănătatea publică
Advertisements

Producerea curentului electric alternativ
Statistica analitica.
MĂSURĂRI ELECTRICE ȘI ELECTRONICE Conf. dr. ing
Curs 14 Sef Luc Dr. Petru A. COTFAS
COMPUNEREA VECTORILOR
Proiect Titlu: Aplicatii ale determinanatilor in geometrie
Fenesan Raluca Cls. : A VII-a A
Ce este un vector ? Un vector este un segment de dreapta orientat
Relații Monetar-Financiare Internaționale Curs 9
Functia de transfer Fourier Sisteme si semnale
ELEMENTE DE STATISTICA MATEMATICA
CERCETĂRI DE MARKETING
Definiţii Statistica este disciplina care se ocupă cu culegerea, înregistrarea, gruparea, analiza şi interpretarea datelor referitoare la un anumit fenomen,
Teste neparametrice.
Profrsor, Spina Mihaela Grup Scolar „ Alexandru Odobescu“, Lehliu Gara
4.1 Ce sunt reţelele complexe? 4.2 Tipuri de reţele complexe
2013 Rezidentiat ORTODONTIE an 1 Modul: Biostatistică Conf. univ. dr
LB. gr.: Φιλο-σοφία Philo-sophia Iubirea-de-înțelepciune
Biostatistică aplicată în sănătatea publică
Interferenta si difractia luminii
CAPITOLUL 3 METODE DE STUDIU ALE CIBERNETICII ECONOMICE
ANALIZA RETELELOR SOCIALE
4. TRANZISTORUL BIPOLAR 4.1. GENERALITĂŢI PRIVIND TRANZISTORUL BIPOLAR STRUCTURA ŞI SIMBOLUL TRANZISTORULUI BIPOLAR ÎNCAPSULAREA ŞI IDENTIFICAREA.
UNIVERSITATEA POLITEHNICA TIMIŞOARA
Curs 5 Sef Luc Dr. Petru A. COTFAS
Legea lui Ohm.
Convertoare eşantionarea digitizarea semnalului
MĂSURAREA ŞI ANALIZA VIBRAŢIILOR STRUCTURILOR
Lasere cu Corp Solid Diode Laser cu Semiconductor
STABILIZATOARE DE TENSIUNE LINIARE
SECURITATEA PE INTERNET. CRIPTAREA CUANTICĂ
MĂSURAREA ŞI ANALIZA VIBRAŢIILOR STRUCTURILOR
Anul I - Biologie Titular curs: Conf. dr. Zoiţa BERINDE
Electromagnetismul Se ocupă de studiul fenomenelor legate de:
DISPOZITIVE ELECTRONICE ȘI CIRCUITE-1
Sisteme de achizitii, interfete si instrumentatie virtuala
TRANSFORMATA FOURIER (INTEGRALA FOURIER).
Noţiuni de mecanică În mecanica clasică, elaborată de Isaac Newton ( ), se consideră că timpul curge uniform, într-un singur sens, de la trecut,
COMPUNEREA VECTORILOR
LABORATOR TEHNOLOGIC CLASA a X-a
TEOREMA LUI PITAGORA, teorema catetei si teorema inaltimii
Tipuri de legătură chimică:
I. Electroforeza şi aplicaţiile sale pentru diagnostic
Cap I. NOŢIUNI DE TERMOCHIMIE
H. Hidrostatica H.1. Densitatea. Unități de măsură
Exemple de probleme rezolvate pentru cursul 09 DEEA
DISPOZITIVE ELECTRONICE ȘI CIRCUITE
I. 2. Inversia Walden Definitie: proces de substituţie nucleofilă, întâlnit la acizii halogenaţi şi hidroxiacizi, ce decurge cu schimbarea configuraţiei.
MATERIALE SEMICONDUCTOARE
Modele de cristalizare
Lucrarea 3 – Indici ecometrici
BINE AŢI VENIT la GIMNAZIALA NR. 5 !.
Circuite logice combinaţionale
Test.
Curs 6 Sef Luc Dr. Petru A. COTFAS
Efectul Puncturării asupra codurilor TURBO şi a decodării MAP
Familia CMOS Avantaje asupra tehnologiei bipolare:
Aplicatie SL.Dr.ing. Iacob Liviu Scurtu
Aplicatii ale interferentei si difractiei luminii
Curs 08 Amplificatoare de semnal mic cu tranzistoare
Aplicaţiile Efectului Joule
Rabaterea Sl.Dr.Ing. Iacob-Liviu Scurtu b ` d ` δ ` a ` c ` X d o a c
FIZICA, CLASA a VII-a Prof. GRAMA ADRIANA
G R U P U R I.
CUPLOARE.
Teoria ciocnirilor si a imprastierii particulelor
Chimie Analitică Calitativă ACTIVITATE. COEFICIENT DE ACTIVITATE
TEORIA SISTEMELOR AUTOMATE
Μεταγράφημα παρουσίασης:

Conf.univ.dr. Georgeta Zanoschi ESANTIONAJUL Conf.univ.dr. Georgeta Zanoschi

INDICATORI DE TENDINŢĂ CENTRALĂ PENTRU CARACTERISTICILE CANTITATIVE SERIA SIMPLĂ SERIA GRUPATĂ x – coloana variantelor caracteristica cantitativă studiată Media aritmetică simplă Mediana (Me) Me = în care: n = numărul de observaţii f – coloana frecvenţelor sau pondere (gr. specifică) Medie ponderată Mediana (Me) – se calculează în funcţie de frecvenţa cumulată Me = în care: Modulul (Mo)Varianta cu frecvenţa cea mai mare

Utilitatea practică a medianei I 2500 g 3000 g 3500 g Speranţa de viaţă la naştere Durata mediană de viaţă Vârsta modală la deces MODULUL Utilitatea practică a medianei I 2500 g 3000 g 3500 g II 2500 g 3000 g 5000 g

INDICATORI DE VARIABILITATE STATISTICĂ PENTRU CARACTERISTICILE CANTITATIVE /. Mărimi absolute : rangul (amplitudinea variaţiei) deviaţia medie deviaţia standard (sigma) 2. Mărimi relative : coeficientul de variaţie. coeficientul de precizie

Serie simplă Serie grupată Rangul: R = X n - Xi Deviaţia medie: ;

Pătratul deviaţiei standard se numeşte VARIANTĂ Acesta reprezintă raportul procentual dintre deviaţia standard şi media aritmetică a seriei de observaţii respective: CV. < 10% dispersie mică colectivitate omogenă 10 - 30% dispersie medie > 30% dispersie mare colectivitate eterogenă COEFICIENTUL DE PRECIZIE (CP.)

Rezultatul final (reducerea datelor statistice) este: = 9,8 zile x f d d2 d2f 7 2 - 2,8 7,84 15,68 8 4 - 1,8 3,24 12,96 9 - 0,8 0,64 4,48 10 11 + 0,2 0,04 0,44 + 1,2 1,44 11,52 12 3 + 2,2 4,84 14,52 35 59,60 = 9,8 zile Deviaţia standard în cazul seriei grupate: Rezultatul final (reducerea datelor statistice) este: = 9,8 zile = 1,3 zile n =35 Perioada de incubaţie a tusei convulsive, la lotul de 35 bolnavi studiat, este de: 9,8 ±1,3 zile.

Poziţia Me pentru seria grupată x f x • f fcumulată 53 1 54 3 162 4 55 5 275 9 56 224 13 57 2 114 15 828

Prelucrarea caracteristicilor calitative Definiţia probabilităţii; PA = Nr. cazuri favorabile/nr.cazuri posibile sau existente Probabilitatea matematică se stabileşte apriori; probabilitatea empirică (experimentală) Probabilitatea fundamentală se stabileşte aposteriori; probabilitatea empirică (experimentală) Masculin: p = 0,515 Feminin: q = 0,485 P = 51,5 % Q = 48,5 % p + q = 1 P + Q = 100

Probabilitatea fundamentală In biostatistică, în studiul fenomenelor de masă acţionează probabilitatea fundamentală, care este o probabilitate medie. Probabilitatea producerii unui eveniment, merge de la imposibilitatea producerii lui şi până la certitudine, şi variază între 0 – 1, 0 – 100, fără a atinge cele două extreme. Cu cât probabilitatea se apropie de 1 sau 100 cu atât probabilitatea producerii evenimentului este mai mare. Dacă p sau P este egal cu ½, atunci sunt şanse egale ca evenimentul să se producă sau să nu se producă.

Probabilităţi compuse Probabilităţi simple Probabilităţi compuse reprezintă probabilitatea de a se realiza în acelaşi timp fie unul, fie altul din mai multe evenimente P3 şi P5 produsul celor două probabilităţi P3 sau P5 suma celor două probabilităţi Caracteristici calitative alternative p + q = 1 P + Q = 100

Prelucrarea datelor statistice calitative Probabilitatea nu se aplică pe caz în parte ci pe colectivitate Prelucrarea datelor statistice în cazul caracteristicilor calitative, se realizează prin calculul frecvenţei acestora Frecvenţa relativă a apariţiei unui eveniment este considerată probabilitatea acelui eveniment. De aceea, frecvenţa se notează cu P Calculul variaţiei (dispersiei) unei frecvenţe (deviaţia standard)

Calculul erorii standard pentru frecvenţe Generalizarea datelor Intervalul de încredere sau de siguranţă statistică IC = LI LS

Definiţia IC Este intervalul în care pornind de la media pe eşantion, dacă studiem caracteristici cantitative sau de la frecvenţa pe eşantion, în cazul caracteristicilor calitative, putem estima, media sau frecvenţa pentru colectivitatea generală (N) IC stabileşte media sau frecvenţa pentru colectivitatea generală (N). Media sau frecvenţa pentru N este estimată şi nu stabilită cu certitudine, ci cu un grad ridicat de probabilitate.

TEORIA EŞANTIONAJULUI Eşantion - mostră - colectivitate de selecţie - colectivitate parţială extrasă aleator dintr-o populaţie N - colectivitatea generală - colectivitatea de bază - colectivitatea de referinţă - bază de sondaj - populaţia ţintă

În statistică Selecţie – reprezintă o colectivitate constituită absolut întâmplător În vorbirea curentă Selecţie – înseamnă o alegere dirijată după un criteriu bine stabilit Eşantionul trebuie să fie reprezentativ pentru colectivitatea generală (N), de unde a fost extras. Reprezentativitatea este determinată de alegerea aleatoare a unităţilor statistice care vor alcătui eşantionul şi nu de volumul acestuia. Precizia eşantionului este determinată de volumul acestuia, adică, de numărul de unităţi statistice, care vor alcătui eşantionul

Tipuri de eşantionaj Schema de constituire a unui eşantion dă şi denumirea tipului de eşantionaj A – eşantion probabilistic (aleator) B – eşantion neprobabilistic, nealeator, empiric a) eşantion aleatoriu simplu sau elementar Realizarea sa cuprinde 3 etape: Realizarea bazei de sondaj Mărimea sau dimensiunea eşantionului, adică cât de mare trebuie să fie n din N; acest lucru se realizează pe baza determinării fracţiunii de eşantionaj Nominalizarea unităţilor statistice, ce vor face parte din eşantion: - Pas de numărare - Selectare tip LOTO - Tabele cu numere aleatoare - EŞ trebuie să fie validat - Generalizarea datelor pe baza IC

A – eşantion probabilistic (aleator) Tipuri de eşantionaj A – eşantion probabilistic (aleator) b) Eşantionul stratificat - Se foloseşte atunci când datele nu sunt dispuse aleatoriu, ci sunt clasate după anumite caracteristici . - Astfel în interiorul populaţiei de referinţă apar mai multe subpopulaţii, subpopulaţii care se numesc straturi. - Caracteristic pentru un strat este omogenitatea internă şi neomogenitatea faţă de celelalte straturi din punctul de vedere al caracteristicii studiate. - Alegerea criteriului de stratificare este foarte importantă

c) Eşantionul în cuiburi (ciorchine) Tipuri de eşantionaj A – eşantion probabilistic (aleator) c) Eşantionul în cuiburi (ciorchine) - Se foloseşte atunci când nu există bază de sondaj, sau atunci când întocmirea ei este greoaie sau costisitoare - Principiu: populaţia de investigat poate fi imaginată ca fiind alcătuită din unităţi de selecţie, agregate şi ierarhizate (gravidele – familie – colectivitate definită – cartier – comună – judeţ – ţară)

Tipuri de eşantionaj A – eşantion probabilistic (aleator) Etape de alcătuire a eşantionului în cuiburi (cuprinde 3 etape): 1. Baza de sondaj – lista cuiburilor (comune, familie) 2. Se extrag aleatoriu cuiburile care vor face parte din EŞ 3. Se investighează toate unităţile de observare din cuiburile extrase. Reprezentativitatea EŞ – este de preferat să fie studiate mai multe cuiburi de dimensiuni mici, decât puţine cuiburi de dimensiuni mari

Tipuri de eşantionaj A – eşantion probabilistic (aleator) d) Eşantionul multistadial - se realizează mai multe extrageri - este utilizat pentru acele procese care implică teste chimice, fizice sau biologice, care pot fi efectuate într-o cantitate mai mică de produs, prin extragerea de subeşantioane dintr-o cantitate mai mare care este ea însăşi un eşantion. - Exemplu: ţară – judeţe – comune – familie – gravide sunt posibile următoarele extrageri Sondajul grad I – judeţele din judeţele selecţionate Sondajul grad II – comunele, din comunele selecţionate Sondajul grad III – familiile, din familiile selecţionate

d) Eşantionul multistadial Tipuri de eşantionaj d) Eşantionul multistadial Baza de eşantionaj cuprinde toate gravidele din care se va face un nou sondaj Sondajul grad IV – care va genera eşantionul ce va fi efectiv investigat. - De obicei se foloseşte eşantionul bistadial sau tristadial.

Tipuri de eşantionaj B – Eşantion neprobabilistic, nealeator, empiric - Reprezentativitatea poate fi asigurată prin alegerea raţională a eşantionului de către cercetător - EŞ neprobabilistic nu implică selecţia aleatoare, deci el nu se bazează pe teoria probabilităţilor, adică se poate ca populaţia să fie sau să nu fie bine reprezentată, dar acest lucru este greu de demonstrat. - În general se folosesc EŞ probabilistice Eşantion neprobabilistic – clasificare 1. Bazat pe convenţie – eşantionajul convenţional - unitatea de observaţie este omul de pe stradă - este folosit pentru a obţine în scurt timp opinia populaţiei (deşi nereprezentativă) - în practica clinică se pot utiliza ca EŞ – pacienţii care ne sunt disponibili

Tipuri de eşantionaj 2. Eşantionajul bazat pe atingerea unui scop - Selecţia se face având un scop a) EŞ tipice (metoda unităţilor tip) Ex. o localitate este reprezentativă pentru situaţia unei zone b) EŞ experţilor c) Metoda cotelor - Este modalitatea cea mai utilizată în cadrul EŞ empiric - Reprezentativitatea constă în realizarea unui EŞ care să aibă o structură asemănătoare cu cea a populaţiei - Alegerea unităţilor statistice se realizează cum doreşte cercetătorul. Ex. I se dau fiecărui cercetător nr. şi caracteristicile persoanelor care trebuie investigate 60 femei din care: 20 – grupa de vârstă 15 – 19 ani 20 – grupa de vârstă 20 – 29 ani 20 – grupa de vârstă 30 – 39 ani lăsându-i libertatea de a le găsi (stradă, vecini) este o metodă care nu necesită prezenţa bazei de sondaj

Tipuri de eşantionaj d) Eşantionul în “bulgăre de zăpadă” - Se identifică unităţile statistice (persoane) care îndeplinesc criteriile pentru a fi incluse în studiu. - Aceste persoane sunt apoi rugate să recomande alte persoane care îndeplinesc aceleaşi criterii - Câteodată este singura modalitate disponibilă (studiu persoanelor fără adăpost). - Această metodă asigură greu reprezentativitatea.

Surse de erori în studiile pe eşantion Există 3 surse de erori: 1. Neinvestigarea unor unităţi statistice selecţionate în eşantion (non-răspuns) 2. Erori din cauza aparaturii de măsură 3. Erori introduse în procesele de editare, codificare, tabelare a rezultatelor

Surse de erori în studiile pe eşantion Soluţii de rezolvare a erorilor: 1. Scăderea procentajului de non-răspunsuri, printr-o pregătire a populaţiei şi a operatorilor de interviu. 2. Cunoaşterea unor caracteristici ale populaţiei “refractare” cu scopul de a le putea compara cu cele ale populaţiei care răspunde, urmărind să testăm dacă diferenţa dintre răspunsuri este semnificativă statistic. EŞ cu persoanele care nu au răspuns – de precizat cauzele 3. O soluţie recomandată - De a găsi un înlocuitor pentru fiecare non-răspuns - Listă de rezervă realizată tot prin extragere la sorţi chiar din momentul începerii selecţiei Înlocuirile duc la realizarea volumului stabilit iniţial al EŞ, dar nu garantează precizia calculată, deoarece non-respondenţii nu vor fi niciodată asemănători cu înlocuitorii lor care au acceptat să participe la studiu.

Surse de erori în studiile pe eşantion Volumul EŞ furnizează numărul de subiecţi de la care trebuie obţinută informaţia, şi nu numărul de subiecţi care trebuie selectaţi pentru studiu.

Realizarea unui eşantion probabilistic (aleator) Cuprinde 3 etape: 1. Baza de sondaj Reprezintă lista cu întreaga populaţie 2. Mărimea sau dimensiunea EŞ – pe baza fracţiunii de eşantionaj 3. Se nominalizează unităţile statistice ce vor face parte din EŞ: - pas de numărare - selectare tip LOTO - tabel cu numere aleatorii - EŞ trebuie validat. Generalizarea datelor - IC

Avantajele unui eşantion probabilistic (aleator) 1. Mai operativ, mai economic 2. Se realizează într-un timp mai scurt 3. Intervin erori de înregistrare mai puţin numeroase 4. Este indispensabil când studiile totale nu se pot efectua 5. Asigurarea unei reprezentativităţi a eşantionului şi a unei precizii Reprezentativitate – selecţie aleatoare Precizia EŞ – volumul EŞ

Realizarea unui eşantion probabilistic (aleator) FRACŢIUNE DE EŞANTIONAJ Prevalenţa HTA = 15 % q = 0,05 → t = 1,96 N = 75.000 locuitori p = 0,15; q = 0,85 ∆ = 0,02

BAZĂ DE SONDAJ ∆2 = eroarea limită sau eroarea maximă admisă Grupa de vârstă N n 0 – 9 10 – 19 20 – 29 30 – 39 40 – 49 50 – 59 60 – 69 70 – 79 80 + 10.725 12.434 10.884 10.754 8.913 8.952 7.460 3.408 1.470 174 202 177 175 145 146 121 55 24 →10.725 : 62 = 174 →12.434 : 62 = 202 →10.884 : 62 = 177 →1.470 : 62 = 24 TOTAL 75.000 1.219 Pas de numărare: K = ∆2 = eroarea limită sau eroarea maximă admisă σ2 (varianţa) = P x Q P = 50 % Dacă nu mai avem nici o cercetare, adică nu-l cunoaştem pe P, Q = 50 % atunci se iau aşa zisele probabilităţi arbitrare.