I ELEKTROSTATIKA
Ņ.Nadežņikovs I Elektrostatika 1.1. Elektriskais lādiņš Eksistē divu veidu lādiņi – pozitīvie un negatīvie. To mijiedarbība. 1.2. Lādiņu pastāvīgums un nezūdamība Elektrons un pozitrons. Viena veida lādiņu nevar ne radīt, ne iznīcināt. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika 1.3. Elektriskā lādiņa diskrētā jeb kvantu daba. Protons (ūdeņraža atoma kodols). Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika 1.4. Kulona likums Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika 4πε0 - koeficients mērvienību saskaņošanai. Ja lādiņu mērvienības ir kuloni (C), attāluma r – metri (m), tad lai iegūtu spēku ņūtonos (N), jālieto ε0 = 8,856∙10 -12 F/m. - vienības vektors, kurš norāda spēka darbības virzienu (r0 = 1). Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Kulons (C) ir lādiņa vienība SI sistēmā. 1C = 1A∙1s. Kulona likumu papildina eksperimentāls fakts: Kulona spēks, kas darbojas uz kādu no lādiņu qi ir vektoriāla summa, ko iegūst, saskaitot mijiedarbības spēkus starp šo lādiņu un katru no visiem pārējiem lādiņiem. Šo faktu sauc par superpozicijas principu. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika
1.5. Lādiņu sistēmas enerģija Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Tuvinot lādiņu q2 lādiņam q1, tiek padarīts darbs un lādiņu q3 – Ceļa trajektorijas formai nav nozīmes. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Lai novietotu lādiņu q3 punktā P3, jāpadara darbs, kas ir vienāds ar divu darbu summu: Lai izveidotu trīs lādiņu sistēmu, jāpadara darbs Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Sistēmai, kuru veido N lādiņi, potenciālās enerģijas izteiksmi var uzrakstīt formā: Divkāršas summas simbols nozīmē: ņem j=1 un summē pēc k=2,3,4,...,N, tad ņem j=2 un summē pēc k=1,3,4,...,N, u.t.t. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika 1.6. Elektriskais lauks Elektriskais lauks – īpašs matērijas veids, kurš iedarbojas uz elektriskiem lādiņiem. Ja lādiņu sistēmas q1, q2,..., qN elektriskā lauka punktā (x,y,z) novieto lādiņu q0, tad saskaņā ar Kulona likumu, uz to iedarbojas spēks Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika r0j – attālums no sistēmas lādiņa qj līdz punktam (x,y,z). Spēks ir proporcionāls q0, tāpēc, ja to izslēdz, iegūst vektoriālu lielumu, kurš ir atkarīgs tikai no sākotnējās lādiņu sistēmas struktūras un punkta (x,y,z) stāvokļa. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Šo vektoriālo (x,y,z) funkciju sauc par elektriskā lauka intensitāti E. Lādiņus q1, q2,...,qN sauc par elektriskā lauka avotiem. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Mērvienība ir ņūtons uz kulonu (Ņ/C). Tā kā 1 Ņ=1 W∙s/m = 1 V∙A∙s/m un 1C=1A∙s, tad 1 N/C=1 V/m. Lai iegūtu elektriskā lauka ainu, intensitātes vektoru E jāsaista ar katru telpas punktu. Attēlojot šos vektorus mērogā atbilstošajos telpas punktos, iegūst vienu no lauka ainām. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Punktveida lādiņu elektriskie lauki: Ņ.Nadežņikovs I Elektrostatika
Divu dažādas polaritātes lādiņu elektriskais lauks Ņ.Nadežņikovs I Elektrostatika
1.7. Izkliedēta lādiņa elektriskais lauks Telpā V nepārtraukti izkliedētu lādiņu raksturo lādiņa tilpuma blīvuma skalāra funkcija ρ(x,y,z). Ja blīvumu ρ reizina ar elementārtilpumu dv=dx∙dy∙dz, iegūst punktveida lādiņu ρ(x,y,z)∙dx∙dy∙dz. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Integrālis dod elektriskā lauka intensitāti punktā (x,y,z), kuru radījuši punktos (x’,y’,z’) izvietotie punktveida lādiņi. Ņ.Nadežņikovs I Elektrostatika
1.8.Elektriskā lauka intensitātes plūsma Lai elektrisko lauku saistītu ar tā avotu, izmanto lielumu, kuru sauc par elektriskā lauka intensitātes plūsmu Φ. Palielinot virsmas elementu skaitu un samazinot to laukumus, no summas pāriet pie virsmas integrāļa. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Tas ir Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika 1.9. Gausa teorēma Elektrisko lauku rada punktveida lādiņš q, kuru aptver sfēriska virsma ar rādiusu r. Lādiņš atrodas sfēras centrā. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Visos punktos uz sfēras virsmas un tā virziena sakrīt ar ārējās normāles virzienu, tāpēc Aptverošās virsmas formai nav nozīmes. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Ja noslēgta virsma S aptver N lādiņus q1, q2,...qN, vai tilpumā V izkliedēts lādiņš ar blīvumu ρ, tad pamatojoties uz superpozicijas principu (E=E1+E2+...+EN) un ievērojot lādīņu aditīvo īpašību (Σq=q1+q2+...+qN) Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Gausa likums ir Kulona likuma un superpozicijas principa tīri ģeometriska rakstura sekas. Gausa likums paplašina mūsu iespējas divos aspektos: 1) saista elektrisko lauku ar tā avotiem un 2) ir matemātiska sakarība, kas kalpo par analītisku instrumentu virknei sarežģītu uzdevumu atrisināšanā. Ņ.Nadežņikovs I Elektrostatika
1.10. Sfēriski izkliedētu lādiņu elektriskais lauks Sfērā ar rādiusu r0 simetriski izkliedēts lādiņš ar blīvumu ρ. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika E vektora plūsma caur virsmu S1 Saskaņā ar Gausa likumu, plūsmai jālīdzinās virsmas S1 aptvertā lādiņa reizinājumam ar 1/ε0. Tādā gadījumā Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Iegūtais intensitātes lielums ir vienliels ar punktveida lādiņa radītā lauka intensitātes lielumu. Izmantojot šo apgalvojumu, var rakstīt Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika Uzlādēta sfēriska apvalka iekšpusē lauka intensitāte ir nulle, tur elektriskais lauks neeksistē. Ņ.Nadežņikovs I Elektrostatika
1.11. Lineāra lādiņa elektriskais lauks Gara uzlādēta taisna vada lādiņu var raksturot ar lādiņa daudzumu uz garuma vienību. Šo lielumu sauc par lādiņa lineāro blīvumu, apzīmē λ mērvienība kuloni uz metru (C/m). Lauka intensitāti E var noteikt, izmantojot Gausa likumu. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika
1.12. Vienmērīgi uzlādētas plaknes lauks Uz plānas virsmas izkliedētu lādiņu sauc par virsmas lādiņu. Tā izkliedi raksturo ar lādiņa virsmas blīvumu, apzīmē ar σ un mēra kulonos uz kvadrātmetru (C/m2). Lauka intensitāti Ep var noteikt, izmantojot Gausa likumu, t.i. Ņ.Nadežņikovs I Elektrostatika
Ņ.Nadežņikovs I Elektrostatika