Tema (04): Inputet dhe funksioni prodhimit

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΠΡΩΤΟΒΑΘΜΙΑ ΕΚΠΑΙΔΕΥΣΗ «ΔΙΔΑΚΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ ΣΤΟ ΠΟΔΟΣΦΑΙΡΟ»
Advertisements

STRATEGJIA E PLANIFIKIMI I MEDIAS
ΜΑΘΗΜΑ 2.  Εργασία (άνθρωπος)  Φύση/Έδαφος (γη)  Κεφάλαιο (χρήμα)  Επιχειρηματικότητα (ιδέα, διοίκηση)
Υπεύθυνη καθηγήτρια: Ε. Γκόνου Μαθητές: Ρωμανός Πετρίδης, Βαγγέλης Πίπης Π.Γ.Ε.Σ.Σ ….Θανέειν πέπρωται άπασι.
ΟΙ ΑΡΓΥΡΟΙ ΚΑΙ ΧΡΥΣΟΙ ΚΑΝΟΝΕΣ ΤΗΣ ΛΥΣΗΣ
Το ερώτημα "τι είναι επιστήμη;" δεν έχει νόημα χωρίς κάποιο χρονικό προσδιορισμό Όταν τις δεκαετίες του 80 και του 90 κατέρρεε το αποκαλούμενο ανατολικό.
Rrjetat kompjuterike.
ΚΥΚΛΟΣ ΤΟΥ NEΡΟΥ Σπουδαιότητα του νερού
Θεωρία Παραγωγής Τι είναι η γεωργική εκμετάλλευση?
TO NEΡΟ ΩΣ ΔΙΑΛΥΤΗΣ – ΜΕΙΓΜΑΤΑ
Modeli IS – LM Tregjet e aktiveve Tregu i mallrave Tregu monetar
Tema (07): Sruktura e tregut dhe diskriminimi i çmimeve
L01 Hyrje në ‘Ekonomiksin e Personelit’
L11 Hyrja/dalja e punëtorëve nga firma, largimi nga puna dhe blerja e punëtorëve Prof.as. Avdullah Hoti.
LIDHJET MIDIS VARIABLAVE MAKROEKONOMIKE
Prof.Dr.Myrvete Badivuku-Pantina
Makroekoomia II
Metodat e analizës dinamike
Tema (07): Srukturat e tregut –maksimizimi i fitimit
Tema (08): Srukturat e tregut –maksimizimi i fitimit (vazhdim)
SHPENZIMET DHE TË ARDHURAT
L11 Hyrja/dalja e punëtorëve nga firma, largimi nga puna dhe blerja e punëtorëve Prof.as. Avdullah Hoti.
Projekt Energjia Elektrike.
Ligjerata 3 Lipidet.
Tema (07): Srukturat e tregut –maksimizimi i fitimit
L11 Hyrja/dalja e punëtorëve nga firma, largimi nga puna dhe blerja e punëtorëve Prof.as. Avdullah Hoti
HYRJE NË LËNDEN E BIOKIMISË
اعداد الأستاذ/ عبدالرؤوف أحمد يوسف
Prof.Dr.Myrvete Badivuku-Pantina
Makroekonomi
L07 Teoria e kapitalit njerëzor
L07 Teoria e kapitalit njerëzor
MAKROEKONOMIA Për nivelin e parë (Bachelor)
LËNDA: VIZATIM TEKNIK ME GJEOMETRI DESKRIPTIVE GJEOMETRI DESKRIPTIVE
Qeverisja e Korporatave
Modeli IS – LM Tregjet e aktiveve Tregu i mallrave Tregu monetar
Makroekoomia III.
Tema (05): Kostot dhe minimizimi i kostove
الفصل السابع: العلاقة بين عناصر الإنتاج وحجم الإنتاج
Makroekoomia III.
Ligjërata 4 SHPENZIMET DHE TË ARDHURAT Prof.as. Avdullah Hoti
Ligjërata 6: Shpenzimet dhe të ardhurat
L05 Teoria e kërkesës për punë
USHQIMI, RRITJA DHE METABOLIZMI
Analiza e të dhënave statistikore
OFERTA DHE PËRCAKTIMI I ÇMIMEVE NË KONKURRENCË TË PLOTË
PLANIFIKIMI FINANCIAR
Enzimat-definicioni Enzyme rrjedh prej fjales – Greke- tharme, ose ferment – (vlim). Enzimet jane katalizator me prejardhje biologjike. Sinteza e tyre.
Fakulteti EKONOMIK DREJTIMI: DREJTIMI MENAXHMENT DHA INFORMATIK
ELEMENTET E KATËRKËNDËSHIT
Punim Seminarik ne Statistike
Modeli IS – LM Tregjet e aktiveve Tregu i mallrave Tregu monetar
L08 Teoria e kapitalit njerëzor
Arsimtari: Muhamer Ujkani
Teprica e acideve yndyrore dhe sinteza e izoprenit, kolesterolit dhe acideve biliare.
BESJANA SHAHINI DHE EGZON BAJGORA
Matematika dhe historia e saj
Tema (03): Teoria e kërkesës
Ass. Dr. Sc. Albulena Xhelili
Syprina e trapezit dhe deltoidit
Syprina e rrethit, sektorit rrethor dhe e unazës rrethore
Λογισμικό Εφαρμογών/Επεξεργασία Κειμένου
L9 Kurba e Philipsit në periudha afatshkurtra dhe afatgjata
Ass. Dr. Sc. Albulena Xhelili
REZISTENCA NË PRERJE Zakonisht, rezistenca në prerje e çdo materiali përcaktohet si ngarkesa për njësi sipërfaqeje, ose sforcimi maksimal që mund të mbajë.
Онтологи ба сайэнс “Сайэнсийн тэори” Проф. С. Молор-Эрдэнэ Лэкц 4
Punimi i diplomës nga Shpejtim Alimi
Ligj. VII POLITIKA MONETARE DHE FISKALE MSC. FISNIK MORINA
Tema;Matematika&Fotografia Punoi; Elsa Lleshi *8B
MEMBRANA QELIZORE, SPORET DHE BIOSINTEZA E MAKROMOLEKULAVE
Μεταγράφημα παρουσίασης:

Tema (04): Inputet dhe funksioni prodhimit Universiteti i Prishtinës Fakulteti Ekonomik Studimet pasdiplomike / Master Lënda: Mikroekonomi e avancuar Tema (04): Inputet dhe funksioni prodhimit

Çështjet që do të trajtohen: 1. Funksioni prodhimit • Produkti mesatar dhe margjinal Izokuantat Norma margjinale e zëvendësimit teknik Elasticiteti I zëvendësimit . 2. Disa forma të veçanta të funksionit të prodhimit 3. Të ardhurat e shkallës 4. Progresi teknologjik

Definime: Funksioni i prodhimit transformon nivelin e dhënë të inputeve në një nivel të caktuar të autputeve. Funksioni i prodhimit tregon se cila është sasia maksimale e produktit që mund të realizohet me një sasi të dhënë të inputeve apo cila është sasia minimale e inputeve që duhet të përdorë firma për të prodhuar një sasi të dhënë produkti. Funksioni i prodhimit shpreh lidhjen mes inputeve të përdorura dhe produktit të prodhuar. Kjo lidhje shprehet me ekuacionin: Q=f (L,K)

Skema e funksionit te prodhimit Shpenzimet Faktoret e prodhimit /Inputet Funksioni i prodhimit Rezultati / Autputi Te hyrat Profiti

Inputet (faktorët e prodhimit, burimet ekonomike) Puna (L), Kapitali (K) Inputet e pandryshueshme (fikse) Inputet e ndryshueshme (variabile) Periudha afatshkurtër Së paku një faktor i pandryshueshëm Periudha afatgjatë Të gjitha inputet ndryshojnë

Funksioni i prodhimit: Q = F(K,L) Q - sasia e produkteve të prodhuara. K - kapitali. L - puna. F - formë e funksionit të raportit input-output. Maksimumi i sasisë së produkteve, që do të prodhohet me njësitë K të kapitalit dhe njësitë L të punës.

Inputet dhe funksioni i prodhimit Ashtu sikurse funksioni i dobisë në teorinë konsumatore që varet nga faktorët ekzogjen (si shija konsumatore) edhe funksioni i prodhimit varet nga kushtet e jashtme teknologjike (progresi teknologjik).

Në periudhë afatshkurtër teknologjia do të merret e pandryshuar që do të thotë Q=f(L). B D Teknikisht efiçiente Teknikisht joefiçiente L (njësitë e punës për vit) Sasia e autputit (njësi për vit) Q=f(L) C Fig.1. Efiçenca dhe joefiçenca teknike

Figura na tregon funksionin e prodhimit për një input Q=f(L) Në të kundërtën L=g(Q) Nëse Q=√L atëherë L=Q² Nëse Q=7, atëherë L=7²=49, që do të thotë se për të prodhuar autputin prej 7 njësi do të nevojiten 49 njësi punë. Meqenëse firma mund të prodhoj më pak se sa niveli I mundshëm i autputit, ekuacioni mund të shkruhet edhe në këtë mënyrë: Q ≤ f(L,K)

Funksioni i prodhimit me një input Funksioni i prodhimit me një input quhet edhe funksioni i produktit total Tab1.Funksioni i produktit total L Q 6 30 12 96 18 162 24 192 150 Zona I L<12 Kthimi rritës margjinal Zona II 12<L<24 Kthimi margjinal me normë zbritëse Zona III L>24 Kthimi negativ margjinal

Funksioni i produktit total Q Funksioni i produktit total Zona I Zona II Zona III an Fig. 2. Funksioni i produktit total

Tab.1. Funksioni i produktit total Produkti mesatar dhe marxhinal Produkti mesatar: APL = Q/L (produkti total / sasia e punës) Tab.1. Funksioni i produktit total L Q AP 6 30 5 12 96 8 18 162 9 24 192 150 max.

Tab.2. Funksioni i produktit total Produkti marxhinal: MPL = ΔQ/ΔL (ndryshimi në produktin total / ndryshimi në sasinë e punës) Tab.2. Funksioni i produktit total L Q MP - 5 11 -7 6 30 12 96 18 162 24 192 150

Fig. 3.Funksioni i produktit mesatar dhe marxhinal Zona III Zona I Zona II Q L Fig. 3.Funksioni i produktit mesatar dhe marxhinal

TP bie K max APL max TP MPL negative Zona I Zona II Zona III L I. Kthimi rritës margjinal II. Kthimi margjinal me normë zbritëse Ligji i të ardhurave margjinale zbritese III. Kthimi Negativ margjinal K MPL= 0 L L Fig. 4. Lidhja mes funksionit të produktit total, mesatar dhe margjinal

Përmbledhje Produkti margjinal i punës në çdo pikë është i barabartë me pjerrësinë e produktit total në atë pikë. Produkti mesatar i punës në çdo pikë është i barabartë me pjerrësinë e drejtëzës nga origjina në produktin total në atë pikë. Në zonën e parë, produkti margjinal i punës do të rritet. Në zonën e dytë, produkti margjinal i punës do të zvogëlohet. Në zonën e tretë, produkti margjinal i punës ndërpret boshtin x dhe bëhet negative.

Funksioni i prodhimit me më shumë se një input Q=f (L, K) Tab. 3. Funksioni i prodhimit (L, K) K 6 12 18 24 30 5 15 25 23 48 81 96 75 137 162 127 192 150 117 L

Fig. 5. “Bregu” i produktit total Funksioni i prodhimit me dy inpute të ndryshueshme Fig. 5. “Bregu” i produktit total

Funksioni prodhimit me dy inpute të ndryshueshme

MPL = Q/L (duke mbajtur të gjitha inputet tjera konstante) Produkti margjinal MPL = Q/L (duke mbajtur të gjitha inputet tjera konstante) MPK = Q/K (duke mbajtur të gjitha inputet tjera konstante)

Izokuantat (vijat barazsasi) Tab. 3. Funksioni i prodhimit me dy faktorë të ndryshueshëm K 6 12 18 24 30 5 15 25 23 48 81 96 75 137 162 127 192 150 117 L

Fig. 6. Izokuantat dhe “Bregu” i produktit total

Të gjitha kombinimet (L,K) japin autputin prej 25 njësi Më shumë autput Fig. 7. Izokuantat dhe funksioni i prodhimit

Definimi: Një izokunat (vija barazsasi) paraqet të gjitha kombinimet e inputeve (punës dhe kapitalit) që i mundësojnë firmës të prodhojë nivelin e njëjtë të sasisë së autputit.

Fig. 8. Zona ekonomike dhe joekonomike e prodhimit Zona joekonomike Zona ekonomike L K Besanko & Braeutigam / Microeconomics: An Integrated Approach Kapitulli 6, Figure 06-09 Fig. 8. Zona ekonomike dhe joekonomike e prodhimit

Norma margjinale e zëvendësimit teknik Norma margjinale e zëvendësimit teknik (MRTS L,K) ose norma zëvendësimit teknik (TRS L,K) tregon: Normën në të cilën sasia e kapitalit duhet zvogëluar për çdo rritje të një njësie të punës, duke mbajtur sasinë e autputit konstant. Normën në të cilën sasia e kapitalit duhet rritur për çdo zvogëlim të një njësie të punës, duke mbajtur sasinë e autputit konstant. MRTS = -K/L = MPL/MPK

Pjerrësia = - 2.5 Pjerrësia = - 0.4 L K Fig. 9. Norma margjinale e zëvendësimit teknik e punës për kapital (MRTSL,K) përgjatë një izokuante

ΔQ= (K X MPK) + (L X MPL) Ndryshimet e K dhe L mbajnë të pandryshuar autputin përgjatë një izokuante ΔQ= (K X MPK) + (L X MPL) 0 =(K X MPK) + (L X MPL) => -K/L = MPL/MPK = MRTSL,K

Nëse produktet margjinale janë pozitive, pjerrësia e izokuantës është negative... Për disa funksione prodhimi, produkti margjinal mund të bëhet negativ. Kjo është zona joekonomike e hartës së izokuantave.

Mundësitë e zëvendësimit të inputeve Funksioni i prodhimit me L mundësi më të mëdha të zëvendësimit inputeve Funksioni i prodhimit me L mundësi të kufizuara të zëvendësimit të inputeve K Fig. 10. Mundësitë e zëvendësimit të inputeve dhe forma e izokuantave

a)Kur funksioni i prodhimit ofron mundësi të kufizuara të zëvendësimit, MRTS(L,K) ndryshon dukshëm kur lëvizim përgjatë izokuantës. Izokuantat kanë afërsisht formën “L” b) Kur funksioni i prodhimit ofron mundësi më të mëdha të zëvendësimit, MRTS(L,K) ndryshon gradualisht kur lëvizim përgjatë izokuantës. Izokuantat janë afërsisht linja të drejta.

Elasticiteti i zëvendësimit Përqindja e ndryshimit në normën K/L σ= Përqindja e ndryshimit në MRTS (L,K) % Δ (K/L) σ= % Δ MRTS (L,K)

Fig. 10. Elasticiteti i zëvendësimit MRTS (L,K) = 4 Pjerrësia = 1 L K K/L në A= pjerrësia e segmentit OA=4 K/L në B= pjerrësia e segmentit OB=1 20 10 10 5 Fig. 10. Elasticiteti i zëvendësimit Përqindja e ndryshimit në normën K/L është (-75), por edhe përqindja e ndryshimit në MRTS (L,K) është (-75), kështu që elasticiteti i zëvendësimit prej pikës A deri në pikën B është σ= 1.

Disa funksione të veçanta të prodhimit Funksioni linear i prodhimit (zëvendësuesit): Q = aL + bK MRTS konstante  = 

Fig.11. Izokuantat për funksionin linear të prodhimit Izokuanta 200 gigabyte L (sasia për kompjuterët me kapacitet më të ulët) K (sasia për kompjuterët me kapacitet më të lartë) Pjerrësia e izokuantës = -1/2 konstant Pjerrësia e izokuantës = -1/2 konstant K (sasia për kompjuterët me kapacitet më të lartë) Izokuanta 200 gigabyte L (sasia për kompjuterët me kapacitet më të ulët) Fig.11. Izokuantat për funksionin linear të prodhimit

Izokuantat e formës “L” 1. Funksioni i prodhimit me raport të pandryshuar-bashkëplotësues (Funksioni i prodhimit Leontief): Q=min (aL, bK) Izokuantat e formës “L” MRTS ndryshon (∞ ose 0) σ =0

Izokuanta për 1 molekulë ujë Izokuanta për 2 molekula ujë Izokuanta për 3 molekula ujë H (sasia e atomeve të hidrogjenit) O (sasia e atomeve të oksigjenit) Fig.12. Izokuantat për funksionin e prodhimit me raport të pandryshueshëm

Funksioni i prodhimit Cobb-Douglas Q = A L K Për dallim nga funksioni I prodhimit linear, norma me të cilën L zëvendësohet me K nuk është konstante Për dallim nga funksioni I prodhimit me raporte të pandryshueshme, norma me të cilën L zëvendësohet me K është e ndryshueshme. MRTS ndryshon prej 0 në ∞, në fakt saktësisht është 1. Izokuanta janë kurba jolineare me pjerrësi zbritëse.  = 1

K (njësi kapitali në vit) L (njësi pune në vit) K (njësi kapitali në vit) Fig.13. Izokuantat për funksionin e prodhimit Cobb-Douglas

Shembull: Funksioni Cobb-Douglas: Q = F(K,L) = K.5 L.5 K i caktuar për 16 njësi. Funksioni i prodhimit Cobb-Douglas në afat të shkurtër: Q = (16).5 L.5 = 4 L.5 Produkti total, kur përdoren 100 njësi të punës? Q = 4 (100).5 = 4(10) = 40 njësi

Q = [aL+bK]1/ , ku  = (-1)/ Funksioni i prodhimit me elasticitet konstant të zëvedësimit Q = [aL+bK]1/ , ku  = (-1)/ Funksioni I prodhimit Leontief (bashkëplotësuesit e plotë):  = 0. Funksioni I prodhimit Cobb-Douglas:  = 1 Funksioni I prodhimit linear (zëvendësuesit e plotë):  = , Funksioni I prodhimit me elasticitet konstant të zëvendësimit:  mes 0 dhe 

L, njësitë e punës në vit) K, njësitë e kapitalit në vit) Fig.14. Funksioni i prodhimit me elasticitet konstant të zëvendësimit

Të diskutohet lidhur me të ardhurat e shkallës (rritëse, konstante, zbritëse)

Fig.16. Të ardhurat e shkallës rritëse, konstante dhe zbritëse a) Të ardhurat rritëse të shkallës b) Të ardhurat konstante të shkallës c) Të ardhurat zbritëse të shkallës  + >1  + =1  + <1

L, njësitë e punës në vit) K, njësitë e kapitalit në vit) Dallimi mes të ardhurave marxhinale zbritëse dhe të ardhurat e shkallës L, njësitë e punës në vit) K, njësitë e kapitalit në vit) Të ardhurat e shkallës -konstante (A, D,E) Të ardhurat margjinale zbritëse të punës (A, B,C) Fig. 17. Të ardhurat margjinale zbritëse përkundër të ardhurave të shkallës

Progresi teknologjik Fig. 18. Progresi teknologjik neutral MRTS (L,K) mbetet e njejtë Izokuanta Q=100 para PT Izokuanta Q=100 pas PT L, njësitë e punës në vit) K, njësitë e kapitalit në vit) MRTS (L,K) mbetet e njejtë Izokuanta Q=100 para PT Izokuanta Q=100 pas PT L, njësitë e punës në vit) K, njësitë e kapitalit në vit) Fig. 18. Progresi teknologjik neutral

L, njësitë e punës në vit) K, njësitë e kapitalit në vit) MRTS (L,K) zvogëlohet Izokuanta Q=100 para PT Izokuanta Q=100 pas PT L, njësitë e punës në vit) K, njësitë e kapitalit në vit) Fig. 18. Progresi teknologjik punë-kursyes (kapital intensiv

L, njësitë e punës në vit) K, njësitë e kapitalit në vit) MRTS rritet Izokuanta Q=100 para PT L, njësitë e punës në vit) K, njësitë e kapitalit në vit) Izokuanta Q=100 pas PT Fig. 18. Progresi teknologjik kapital-kursyes (punues- intensiv)

Çështjet e trajtuara gjenden në kreun 6 të librit: “Microeconomics: An Integrated Approach” nga autorët: David A. Besanko dhe Ronald R. Braeutigam, fq. 217- 294