ELEKTROMAGNETICKÉ VLNENIE

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
NÁZOV ČIASTKOVEJ ÚLOHY:
Advertisements

Prístroje na detekciu žiarenia
Stredná odborná škola automobilová Moldavská cesta 2, Košice
 Avitaminóza sa u človeka nedokázala.
Rozdelenie odpadových vôd Čistenie odpadových vôd
Diagnostické a terapeutické metódy v medicíne
Vlnenie Kód ITMS projektu:
Elektrický odpor Kód ITMS projektu:
Prístroje na detekciu žiarenia
OPAKOVANIE.
Prúdenie ideálnej kvapaliny
PPMS - Physical Property Measurement System Quantum Design
Ranné teórie svetla Newton – Huygens.
Odvoz odpadu.
Medzinárodná sústava jednotiek SI
Zariadenia FACTS a ich použitie v elektrických sieťach
Efektívny spôsob úspor energie
MVDr. Zuzana Kostecká, PhD.
Mechanická práca na naklonenej rovine
Teplota a teplo.
Sily pôsobiace na telesá v kvapalinách
LICHOBEŽNÍK 8. ročník.
Autor: Štefánia Puškášová
STEREOMETRIA REZY TELIES
Fyzika-Optika Monika Budinská 1.G.
Digitálne spracovanie obrazu
Prístroje na detekciu žiarenia
Polovodiče Kód ITMS projektu:
OHMOV ZÁKON, ELEKTRICKÝ ODPOR VODIČA
Ⓐ Ⓑ H2O2 → H2O + ½ O2 Enzýmy sú zvyčajne jednoduché bielkovinové
Prístroje na detekciu žiarenia
ANALYTICKÁ GEOMETRIA.
Príklad na pravidlový fuzzy systém
ŠTRUKTÚRA ATÓMOV A IÓNOV (Chémia pre 1. roč. gymn. s.40-53; -2-
Zhodnosť trojuholníkov
Programové vyhlásenie fyziky
ELEKTRICKÉ SVETLO.
Ročník: ôsmy Typ školy: základná škola Autorka: Mgr. Katarína Kurucová
Prístroje na detekciu žiarenia
Vlastnosti kvapalín Kód ITMS projektu:
TRIGONOMETRIA Mgr. Jozef Vozár.
Patrícia Scholczová Lucia Paholková Júlia Olenčinová Lucia Sajgóová
ClCH2CH2Cl CF2=CF2 CCl4 CHI3 CCl2F2 CH2=CClCH=CH2 CHCl3 CH3Cl CH2=CHCl
Rozpoznávanie obrazcov a spracovanie obrazu
CHÉMIA Pracovný list Pracovný list HALOGÉNDERIVÁTY UHĽOVODÍKOV
Základné princípy radiačnej ochrany
ŽILINSKÁ UNIVERZITA V ŽILINE STAVEBNÁ FAKULTA
CHÉMIA DOPLNKOVÉ TEXTY PRE 3. ROČ. GYMNÁZIÍ str
Pohyb hmotného bodu po kružnici
Prizmatický efekt šošoviek
Dostredivá sila Ak sa častica pohybuje po zakrivenej dráhe, má dostredivé zrýchlenie a teda naň musí pôsobiť dostredivá sila kde
Mechanické vlnenie Barbora Kováčová 3.G.
Rovnoramenný trojuholník
Téma: Trenie Meno: František Karasz Trieda: 1.G.
Konštrukcia trojuholníka pomocou výšky
CHEMICKÁ VäZBA.
Úvod do pravdepodobnosti
Termodynamika korózie Oxidácia kovu Elektródový potenciál
DISPERZIA (ROZKLAD) SVETLA Dominik Sečka III. B.
Atómové jadro.
Rádioaktívne žiarenie
Rovnice priamky a roviny v priestore
Alternatívne zdroje energie
EKONOMICKÝ RAST A STABILITA
Meranie indukcie MP Zeme na strednej škole
Elektronická tachymetria
TMF 2005 námety k úlohám František Kundracik
Radiačná bezpečnosť v optických komunikáciách
Svietlo a svietidlá inšpirácia
Striedavý prúd a napätie
Μεταγράφημα παρουσίασης:

ELEKTROMAGNETICKÉ VLNENIE Michaela Jarábeková 3.G.

Elektromagnetické vlnenie Ako sa delí elektromagnetické vlnenie Prenos informácií elektromagnetickým vlnením v súčasnosti

Elektromagnetické vlnenie môžeme rozdeliť na tieto základné zložky: Televízne a rádiové vlny Dlhé vlny Stredné vlny Krátke vlny Veľmi krátke vlny Ultra krátke vlny Mikrovlny Infračervené žiarenie Viditeľné svetlo Ultrafialové žiarenie Röntgenové žiarenie Gama žiarenie

Elektromagnetické vlnenie Televízne a rádiové vlny Používajú sa na prenos správ a televízneho obrazu rýchlosťou svetla po celom svete. Mikrovlny majú vlnovú dĺžku v rozmedzí od 1mm do 0,3m. Mikrovlny takisto používa radar, mikrovlnné rúry,... Ultrafialové vlny Nemôžeme ho vidieť, ale niektorý hmyz áno. Obvykle prichádza zo Slnka a väčšina je pohltená v ozónovej vrstve. Ultrafialové vlny nás aj opaľujú.

Elektromagnetické vlnenie Infračervené žiarenie Má väčšiu vlnovú dĺžku ako červené svetlo Nemôžeme ho vidieť, ale cítime ho ako teplo. Nazývame ho i tepelným žiarením, pretože ho vyžaruje väčšina teplých predmetov. Gama žiarenie Má najmenšiu vlnovú dĺžku. Je vysielané niektorými rádioaktívnymi látkami, napr. uránom. Je veľmi prenikavé, môže prechádzať olovom aj betónom. Poškodzuje bunky nášho tela preto je veľmi nebezpečné.

Dĺžky jednotlivých žiarení

Podľa vlnovej dĺžky λ sa elektromagnetické vlny delia na : Vlnová dĺžka Frekvenčný rozsah v MHz Použitie Centimetrové vlny 10 cm 470 až 790 Mikrovlnky, satelitné spojenie Ultrakrátke vlny 1 m 174 až 230 Televízia, radar Veľmi krátke vlny 10 m 87,5 až 100 FM vysielače Krátke vlny 100 m 3,905 až 17,9 Amatérske a lodné vysielačky Stredné vlny 1000 m 0,525 až 1,605 Rádio na mori Dlhé vlny 10 km 0,15 až 0,285 Rádio

Prenos informácií elektromagnetickým vlnením v súčasnosti V súčasnosti sa prenos správ na veľké vzdialenosti uskutočňuje prostredníctvom elektrického prúdu, a to tak, že správa ovplyvňuje niektorý parameter elektrického prúdu a takto vytvorený elektrický prúd sa prenáša na miesto určenia. Elektrický prúd, ktorý je nositeľom určitej správy, nazývame elektrický signál. Elektrický signál je teda akýmsi elektrickým ekvivalentom správy. Prenosom elektrického signálu od odosielateľa ku príjemcovi sa zaoberá technická vedná disciplína nazývaná OZNAMOVACIA TECHNIKA.

Oznamovacia technika Oznamovaciu techniku rozdeľujeme na telekomunikačnú a rádiokomunikačnú. Rádiokomunikačná sa zaoberá prenosom informácií pomocou elektromagnetických vĺn, ktoré sa šíria vo voľnom priestore. Telekomunikačná sa zaoberá prenosom informácií pomocou elektromagnetických vĺn, ktoré sa šíria po metalickom alebo optickom vedení. Ľubovoľný rádiokomunikačný alebo telekomunikačný prenosový systém tvorí spojovací reťazec, ktorý obsahuje: vysielač, v ktorom sa informácia mení na elektrický signál s frekvenčným spektrom vhodným pre efektívne využitie prenosové prostredie, ktorým sa signál prenáša od vysielača ku prijímaču prijímač, ktorého úlohou je spracovanie prijatého elektrického signálu a jeho transformácia na pôvodnú informáciu.

Televízne vysielanie Od vynálezu rádia a ovládnutia elektomagnetického vlnenia sa ľudia pokúšali o prenos obrazu a zvuku na diaľku. Myšlienka prenosu obrazov na diaľku spočíva v premene svetla na elektrický signál a  neskôr v spätnej transformácii signálu na svetlo. Prenášaný obraz sa rozdelí na malé štvorčeky. Pomocou fotoelektrického javu sa premení svetelná energia každého zobrazovaného bodu na elektrický signál. Obraz sa sníma pomocou videokamery. Svetlo odrážajúce sa od snímaného objektu prechádza cez objektív kamery ovládaný elektromotorčekom na mikročip pozostávajúci až zo 400 000 drobných svetlocitlivých snímačov. Dôležitý je fakt, že každá farba farebného spektra je utvorená z troch základných farieb – červenej, zelenej a modrej. Z toho vyplýva, že každý farebný obraz sa dá filtrami rozložiť na tieto farby. Preto sú v kamere látky, citlivé práve na tieto tri farby. Dopadom svetla na snímač vzniká elektrický náboj, ktorý je tým väčší, čím je svetlo intenzívnejšie. Vzniknutý el. signál sa potom buď priamo vysiela pomocou elektromagnetických vĺn, alebo sa uchová buď nahratím na magnetickú pásku či iným spôsobom.

Televízne vysielanie Televízny signál je elektromagnetické vlnenie presne tak isto ako svetlo či rádiové vlnenie. Spolu so signálom televízie sa šíri aj zvuková vlna. Televízny prijímač je schopný tieto signály rozoznať a roztriediť. Vďaka tomu môžeme v reálnom čase sledovať obraz aj počuť zvuk súčasne. Na televízny prenos sa musia používať len ultrakrátke vlny, z čoho vyplýva, že vzdialenosť televízneho prenosu je obmedzená na priamu viditeľnosť.

Rádiové vysielanie Na začiatku každého rozhlasového vysielania je skutočný zvuk, či je to hudba, reč alebo iný druh zvuku. V rozhlasovom štúdiu sa šíri od svojho zdroja zvukovými vlnami do okolitého prostredia. Zvukové vlny dopadnú na mikrofón, v ktorom sa ich energia mení na energiu elektromagnetickú. Vznikne striedavý elektrický signál, ktorého frekvencia je zhodná s frekvenciou zvukových vĺn. Tento signál nízkofrekvenčných mikrofónov sa potom zosilňuje nízkofrekvenčným zosilňovačom. Upravuje sa v zvukovej reči a znova zosilňuje na napätie potrebné na diaľkový prenos do vlastného vysielača a to zvyčajne káblovým prenosom.

Iné využitie Využitie prenosu informácii elektromagnetickým vlnením je veľmi rozmanité a nástupom nových technológii sa stále rozširuje. Najčastejšie používané zariadenie, ktoré pracuje pomocou elektromagnetických vĺn je mobilný telefón. Mnoho ľudí si ani neuvedomuje, na akom princípe pracuje. Mobilný telefón funguje na frekvenciách 900 MHz, 1800 MHz, prípadne v Amerike aj 1900 MHz. WiFi alebo aj Wireless Fidelity je bezdrôtová technológia prenosu dát. .WiFi svojim užívateľom ponúka hneď niekoľko plusov: vytvoriť si sieť ľahko a rýchlo, bez nutnosti ťahať káble. WiFi používa pri prenose dát mikrovlny a vysiela v určenom pásme, ktoré je vyčlenené regulačným orgánom. V tomto pásme môžu vysielať hromadné oznamovacie prostriedky ako televízie a rádia. Zároveň v ňom fungujú aj mikrovlné rúry a iné spotrebiče a preto sa medzinárodnou dohodou vyčlenilo takzvané pásmo ISM (Industrial Scientific and Medical), čo v preklade znamená pásmo vyhradené pre priemyselné, vedecké a lekárske účely.

Rádiové teleskopy

Zdroje www.google.sk

Ďakujem za pozornosť Michaela Jarábeková