ClCH2CH2Cl CF2=CF2 CCl4 CHI3 CCl2F2 CH2=CClCH=CH2 CHCl3 CH3Cl CH2=CHCl

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Elektrické vlastnosti látok
Advertisements

ΟΡΓΑΝΙΚΗ ΧΗΜΕΙΑ Για τη Β Λυκείου.
Prístroje na detekciu žiarenia
* BIELKOVINY ( PROTEÍNY) str. 91 – 101
CHÉMIA Pracovný list BIELKOVINY Otázky a úlohy
 Avitaminóza sa u človeka nedokázala.
Karbonylové zlúčeniny II
Rozdelenie odpadových vôd Čistenie odpadových vôd
Vlnenie Kód ITMS projektu:
CHÉMIA PRVKY s C Fe Seminár z CH 18 (35. , 36. vyuč. hod.)
Elektrický odpor Kód ITMS projektu:
Stredná odborná škola automobilová Moldavská cesta 2, Košice
Prístroje na detekciu žiarenia
Organická kontaminácia pôdy
Prúdenie ideálnej kvapaliny
PPMS - Physical Property Measurement System Quantum Design
Heterocyklické zlúčeniny II
Medzinárodná sústava jednotiek SI
OPAKOVANIE CHEMICKÁ VÄZBA A ŠTRUKTÚRA LÁTOK
Fehlingova skúška (červenohnedá zrazenina oxidu meďného)
MVDr. Zuzana Kostecká, PhD.
Mechanická práca na naklonenej rovine
Sily pôsobiace na telesá v kvapalinách
LICHOBEŽNÍK 8. ročník.
Autor: Štefánia Puškášová
STEREOMETRIA REZY TELIES
Fyzika-Optika Monika Budinská 1.G.
Prístroje na detekciu žiarenia
Polovodiče Kód ITMS projektu:
OHMOV ZÁKON, ELEKTRICKÝ ODPOR VODIČA
Ⓐ Ⓑ H2O2 → H2O + ½ O2 Enzýmy sú zvyčajne jednoduché bielkovinové
ANALYTICKÁ GEOMETRIA.
Formálne jazyky a prekladače
Príklad na pravidlový fuzzy systém
ŠTRUKTÚRA ATÓMOV A IÓNOV (Chémia pre 1. roč. gymn. s.40-53; -2-
Ročník: ôsmy Typ školy: základná škola Autorka: Mgr. Katarína Kurucová
Prístroje na detekciu žiarenia
Vlastnosti kvapalín Kód ITMS projektu:
TRIGONOMETRIA Mgr. Jozef Vozár.
CHI3 CHCl=CCl2 ▼ Úlohy CH2—CH—CH2 Cl CF2—CH2 Br C = CH
ELEKTROMAGNETICKÉ VLNENIE
☺ Podľa uvedených tém charakterizujte
ΕΝΕΡΓΕΙΑ 7s_______ 7p_________ 7d____________ 7f_______________
CHÉMIA Pracovný list Pracovný list HALOGÉNDERIVÁTY UHĽOVODÍKOV
CHÉMIA DOPLNKOVÉ TEXTY PRE 3. ROČ. GYMNÁZIÍ str
Inštruktážna prednáška k úlohám z analytickej chémie
Ultrafialové žiarenie
3.3.1 Charakteristika heterocyklických zlúčenín
CHÉMIA DOPLNKOVÉ TEXTY PRE 3. ROČ. GYMNÁZIÍ str
Pohyb hmotného bodu po kružnici
Prizmatický efekt šošoviek
Stupne efektívnosti nákladov na výrobu
Aplikácia bioizostérie pri vývoji liečiv
Rovnoramenný trojuholník
Téma: Trenie Meno: František Karasz Trieda: 1.G.
Heterocyklické zlúčeniny
CHEMICKÁ VäZBA.
Úvod do pravdepodobnosti
Termodynamika korózie Oxidácia kovu Elektródový potenciál
Ονοματολογία οργανικών ενώσεων
Atómové jadro.
Rovnice priamky a roviny v priestore
NEUTRALIZAČNÁ ANALÝZA - s, p PRVKY
Alternatívne zdroje energie
EKONOMICKÝ RAST A STABILITA
Meranie indukcie MP Zeme na strednej škole
Elektronická tachymetria
 Prípravné úlohy Kyslíkaté deriváty uhľovodíkov
Striedavý prúd a napätie
Ονοματολογία οργανικών ενώσεων
Μεταγράφημα παρουσίασης:

ClCH2CH2Cl CF2=CF2 CCl4 CHI3 CCl2F2 CH2=CClCH=CH2 CHCl3 CH3Cl CH2=CHCl 4.3 DERIVÁTY UHĽOVODÍKOV -1- -2- Halogénderiváty uhľovodíkov sú zlúčeniny, ktoré majú vo svojich molekulách väzbu C – halogén (C – X). Odvodíme ich od všetkých druhov uhľovodíkov nahradením jedného alebo viacerých vodíkov v ich molekulách halogénom. Najbežnejšie sú chlórované deriváty uhľovodíkov. Dôležité sú aj freóny, ktoré obsahujú najmenej dva rozdielne halogény, z ktorých aspoň jeden je fluór. O derivátoch uhľovodíkov sme už hovorili ako o organických zlúčeninách, ktoré teoreticky odvodíme od uhľovodíkov nahradením vodíka alebo vodíkov charakteristickou skupinou. Vlastnosti derivátov uhľovodíkov určuje najmä charakteristická skupina, ale na vlastnosti má vplyv aj uhľovodíkový zvyšok. V tabuľke 1 sú uvedené niektoré najbežnejšie deriváty uhľovodíkov. 4.3.1 Halogénderiváty uhľovodíkov halogénderiváty -F, -Cl, -Br, -I nitroderiváty -NO2 amíny primárne -NH2 sekundárne >NH terciárne >N– alkoholy a fenoly -OH (hydroxyderiváty) étery R–O– aldehydy ketóny PREHĽAD CHARAKTERISTICKÝCH SKUPÍN Tabuľka 1 Deriváty uhľovodíkov Charakteristické skupiny C=O — O H —C ═ karboxylové kyseliny -COOH tioly -SH sulfidy R–S– sulfónové kyseliny -SO3H V substitučnom názvosloví sa prítomnosť halogénu vyjadruje predponou halogén- pripojenou k názvu príslušného uhľovodíka. Skupinové názvy sú zložené z názvu jednoväzbovej skupiny a prípony –halogenid. Niektoré halogénuhľovodíky majú triviálne názvy: ClCH2CH2Cl CCl3 CH Cl 1,1,1-trichlór-2,2-bis(4-chlórfenyl)etán, DDT tetrachlórmetán (chlorid uhličitý) trijódrmetán jodoform CF2=CF2 CH2Cl chlórmetylbenzén benzylchlorid 1,2-dichlóretán etyléndichlorid tetrafluóretylén CCl4 CHI3 Prehľad 6 dichlórdifluórmetán (freón 12) CCl2F2 CH2=CClCH=CH2 2-chlórbuta-1,3-dién trichlórmetán chloroform chlórmetán metylchlorid CHCl3 CH3Cl CH2=CHCl vinylchlorid chlóretylén CHCl=CCl2 trichlóretylén 1,2,3,4,5,6-hexachlór- cyklohexán, HCH 1,2-dichlórbenzén o-dichlórbenzén Halogénderiváty uhľovodíkov sa pripravujú najčastejšie z uhľovodíkov, a to z alkánov radikálovou substitúciou, z arénov elektrofilnou substitúciou a z alkénov a alkínov adíciou. Pre svoju reaktívnosť voči nukleofilným činidlám sa využívajú v organickej syntéze. Niektoré halogénderiváty nenasýtených uhľovodíkov , napr. vinylchlorid, tetrafluóretylén, chloroprén, sa využívajú na výrobu syntetických polymérov. Mnohé halogénderiváty sú vynikajúce rozpúšťadlá tukov a olejov. 4.3.1.1 Chemické vlastnosti halogénderivátov uhľovodíkov Polarita väzby C–X v molekule halogémderivátov, ktorá stúpa v súhlase so stú- pajúcou elektronegativitou od jódu k fluóru, utvára predpoklady pre ich reakti- vitu. Pri reakciách táto väzba zaniká zvyčajne heterolyticky, to znamená tak, že väzbový pár elektrónov sa celkom presunie k halogénu a väzba sa potom štiepi pri eliminácii halogenidového aniónu. Pri heterolytickom zániku väzby má významnú úlohu i polarizácia väzieb. Prejavuje sa posunom páru väzbových elektrónov z pôvodnej polohy účinkom elektrického náboja reagujúcej častice. Polarizácia stúpa od fluóru k jódu, teda opačne ako polarita. Keďže polarizácia väzby C–X ovplyvňuje reaktivitu viac ako jej polarita, sú jódderiváty zo všet- kých halogénderivátov vo väzbe C–X najreaktívnejšie. Reaktivitu ovplyvňuje aj rozpúšťadlo, ktoré sa používa pri reakcii. Základné vlastnosti halogénderivátov (halogénuhľovodíkov) určuje polarita väzby C – X, lebo v dôsledku podstatne vyššej elektronegativity halogénov v porovnaní s uhlíkom v molekulách halogénderivátov nastáva nerovnomerné rozdelenie väzbových elektrónov. Na uhlíkovom atóme sa preto utvára čiastočný kladný náboj a na halogéne čiastočný záporný náboj. Má vždy hodnotu menšiu ako jedna a znázorňujeme ho symbolom δ. C → X δ+ δ− Elektrónový pár, ktorý tvorí túto polárnu väzbu, je bližšie pri halogéne X ako pri atóme C, takže elektrónová hustota okolo halogénu je väčšia. S polaritou väzby sa stretávame v organickej chémii veľmi často. Okrem väzby C-halogén aj pri väzbách uhlíka s inými prvkami s väčšou elektronega- tivitou, napr. C–O, C–N. Cu (meď) Beilsteinova skúška ako dôkaz organických halogénderivátov CCl2F2 freón CBrF3 halón Halogénderiváty s nízkou relatívnou hmotnosťou sú plyny. Ostatné sú kvapaliny alebo tuhé látky, najmä keď obsahujú vo svojich molekulách viac halogénových atómov (tuhé sú napr. jodoform a o-dichlórbenzén). Niektoré majú narkotické účinky (napr. chloroform). prchavá kvapalina - na miestne znecitlivenie Zložitejšie halogénderiváty uhľovodíkov, napr. DDT alebo HCH, a to jeden z jeho priestorových izomérov, nazvaný γ-izomér, sa začali používať po druhej svetovej vojne ako insekticídy v poľnohospodárstve a na ničenie hmyzu, ktorý prenáša choroby (maláriu, spavú nemoc). Tieto zlúčeniny sú však jedovaté a veľmi stále. Väčšina živočíchov, vrátane človeka, ich nevie biochemicky odbúrať, hromadia sa v ich tele, kde sa dostávajú potravou, a tak ohrozujú zdravie. V mnohých štátoch je preto rozsiahlejšia aplikácia týchto látok obmedzená a zakázaná. U nás je zakázané používať DDT na ochranu rastlín. Hexán po zohriatí reaguje s brómom. Uvoľnený HCl sfarbí mokrý indikátorový papierik na červeno. chlórbenzén CHÉMIA PRE 2. ROČ. GYMNÁZIÍ str. 112 - 119 4 CHÉMIA ZLÚČENÍN UHLÍKA CH3CH2Cl

Uvedieme dva príklady, a to dve reakcie jódetánu s hydroxidom sodným (reagovadlom je anión OH− ) a etoxidom sodným (reagovadlom je etoxidový anión CH3CH2O− , časť 4.3.4.1.1): Podobne reagujú halogénderiváty aj s inými nukleofilnými činidlami, napr. s amoniakom alebo s amínmi. -3- -4- CH3CH2O ‌ − C I CH3 H H δ+ δ− → + I− jódetán C CH3CH2O dietyléter etoxyetán V prvom prípade vzniká etanol, v druhom prípade etoxyetán (dietyéter). Obidve reakcie patria medzi nukleofilné substitúcie, označované ako SN . Pri nich nukleofilné činidlo OH− alebo CH3CH2O − svojím voľným elektrónovým párom atakuje v molekule jódetánu čiastočne kladne nabitý atóm uhlíka. Ten priberá pár elektrónov, a tak utvára novú väzbu, v tomto prípade medzi atómami O a C za heterolýzy väzby C–I a odštiepením jodidového aniónu. Z halogénderivátov sú všeobecne halogénalkány reaktívnejšie ako halogénalkény (s halogénom viazaným priamo na uhlíku s dvojitou väzbou) aj ako halogénarény, teda napr. brómetán reaguje s nukleofilnými činidlami omnoho ochotnejšie ako vinylbromid alebo brómbenzén. 4.3.1.2 Indukčný efekt Polárny charakter väzby sa neprejavuje len na vlastnostiach väzby C–X, ale prenáša sa i na susedné väzby. Tak nastáva zníženie elektrónovej hustoty na ďalších uhlíkových atómoch reťazca, ktoré je tým väčšie, čím bližšie je uhlíkový atóm k väzbe C–X. Na týchto uhlíkových atómoch sa vtedy objavuje čiastkový kladný náboj, ktorý sa však rýchlo zmenšuje so zväčšujúcou sa vzdialenosťou od väzby C–X: Toto sa volá indukčný efekt, čiže I-efekt. V prípade, že istá väzba vyvoláva na susednom atóme zníženie elektrónovej hustoty (a to je práve uvedený prípad), hovoríme o zápornom indukčnom efekte, čiže −I-efekte. 1δ+ > 2δ + > 3δ + C—C—C— X 3δ+ 2δ + 1δ + δ − Praktický príklad na uplatnenie −I-efektu je eliminácia. Môže nastať (okrem substitúcie) pri reakcii alkalického hydroxidu s jódetánom. Následkom −I-efektu väzby C–I sa objavuje na uhlíkovom atóme skupiny −CH3 čiastočný kladný náboj δ+ priťahovaním väzbových elektrónov k sebe a vtedy vodíky sa ľahšie štiepia ako protóny. V porovnaní s vodíkmi metylovej skupiny v molekule uhľovodíka sú tieto vodíky kyslejšie. Potom hydroxidový anión viaže na jeden zo svojich elektrónových párov jeden vodík z metylovej skupiny ako protón (OH− sa správa ako zásada) za vzniku molekuly vody a utvorený elektrónový pár z pôvodnej väzby C—H utvorí dvojitú väzbu medzi uhlíkovými atómami. Pritom sa súčasne odštiepi anión I− . Tento efekt vyvolávajú napr. väzby uhlíka s atómami prvkov s veľkou elektronegativitou (napr. halogénom, kyslíkom, dusíkom). Pri tejto eliminácii vzniká alkén, voda a jodidový anión. HO ‌ − HO etanol C C I H + I− HOH + C C H H Keď je na uhlíkový atóm naviazaný atóm alebo skupina atómov prvkov s menšou elektronegativitou, ako má uhlík, polarita väzby je opačná, ako má väzba C–halogén. V takomto prípade je elektrónová hustota okolo uhlíkového atómu väčšia, čo sa prejaví zvyšovaním elektrónovej hustoty na susedných uhlíkoch. Ako príklad možno uviesť väzbu C–M (M – kov; anglicky metal). C M Je to kladný indukčný efekt, čiže + I-efekt, ktorý vyvolávajú aj alkyly. Trichlóretylén sa uplatňuje aj ako rozpúšťadlo. Vinylchlorid je tiež karcinogénny plyn, polymerizuje na polyvinylchlorid, známy pod skratkou PVC. V nemäkčenej forme ho poznáme pod názvom Novodur, v mäkčenej forme Novoplast. 3. Aký je rozdiel medzi homolýzou a heterolýzou väzby? Uveďte príklady. 4. Ktorá reakcia je typická pre halogénderiváty a ktorá iná ju môže sprevádzať? 5. Čo majú spoločné halogénderiváty, ktoré sú schopné polymerizácie? 6. Čo sa získa pôsobením metoxidu sodného (CH3O− Na+ ) v metanole na 1-brómbután? 7. Navrhnite prípravu chloroprénu z but-1-én-3-ínu. 8. Vysvetlite pojem monomér a polymér. Sú polyméry látky, ktoré sa vyrábajú len synteticky, alebo sa nachádzajú aj v prírode? 9. Vysvetlite rozdiel medzi polaritou a polarizovateľnosťou väzby. 10. Treba uvádzať pri systémovom názve trichlóetylénu i polohy chlórových atómov? Môžu existovať jeho cis-, trans- izoméry? ▼ Úlohy 1. Napíšte systémové substitučné názvy týchto zlúčenín: 2. a) Predstavujú obidva vzorce tú istú zlúčeninu? CH2—CH—CH2 CH2=CH—CH2 CH=CH—CH3 CF2—CH2 F Cl Br a b c d CH2—CH2 b) Vysvetlite zásady tvorby substitučných (skupinových) názvov. c) Napíšte vzorce : chlórmetán (metylchlorid), chlóretén (vinylchlorid), chlórmetylbenzén (benzylchlorid). d) Nazvite: CHCl3 , Cl-CH2─ CH2-Cl , CF3−CHBrCl (halotán). Pozn.: CHCl3 patrí medzi inhalačné anestetiká; účinný je aj halotán Tetrafluóretylén polymerizáciou dáva produkt – teflón. Je mimoriadne stály, odolný voči kyselinám, zásadám i vysokým teplotám. Chloroprén je surovina na výrobu chloroprénového kaučuku, ktorý je jeho polymérom. Chlórbenzén je kvapalina a využíva sa ako surovina na prípravu aromatických zlúčenín. Teflón Cl + O3  ClO + O2 ClO + O  Cl + O2 Dichlódifluórmetán je typickým predstaviteľom freónov, kvapalín, ktoré sa používajú ako náplň do chladničiek, hasiacich prístrojov a najrozličnejších sprejov. Freóny sa používajú v automatoch chemických čistiarní. Nepriaznivo vplývajú na ozónovú vrstvu atmosféry chrániacu našu planétu pred nadmerným ultrafialovým žiarením Slnka, preto sa obmedzuje ich použitie ako hnacích plynov v sprejoch. CHCl3 Chloroform a tetrachlórmetán sú prchavé kvapaliny. Používajú sa ako rozpúšťadlá. Tetrachlórmetán je jedovatá zlúčenina, zaraďuje sa medzi zlúčeniny, ktoré majú pravdepodobne karcinogénne účinky. CH3 Cl -I efekt 4.3 DERIVÁTY UHĽOVODÍKOV (Halogénderiváty ) 4 CHÉMIA ZLÚČENÍN UHLÍKA