Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Γειά σας. Say: take a pencil. Πάρε ένα μολύβι. Nick, give me my book.
Advertisements

Translation Tips LG New Testament Greek Fall 2012.
ΗΥ Παπαευσταθίου Γιάννης1 Clock generation.
6/26/2015HY220: Ιάκωβος Μαυροειδής1 HY220 Asynchronous Circuits.
Παρεμβολή (Interpolation)
Week 11 Quiz Sentence #2. The sentence. λαλο ῦ μεν ε ἰ δότες ὅ τι ὁ ἐ γείρας τ ὸ ν κύριον Ἰ ησο ῦ ν κα ὶ ἡ μ ᾶ ς σ ὺ ν Ἰ ησο ῦ ἐ γερε ῖ κα ὶ παραστήσει.
WRITING B LYCEUM Teacher Eleni Rossidou ©Υπουργείο Παιδείας και Πολιτισμού.
Πολυώνυμα και Σειρές Taylor 1. Motivation Why do we use approximations? –They are made up of the simplest functions – polynomials. –We can differentiate.
COURSE CODE: DES-102 COURSE TITLE: DECORATION DRAWING TUTOR: DOMENICA RENKO SEMESTER: FALL 2010 PROJECT: 2 | hand-out: week 10 – hand-in: week 11 | duration:
Lesson 6c: Around the City I JSIS E 111: Elementary Modern Greek Sample of modern Greek alphabet, M. Adiputra,
Προσομοίωση Δικτύων 4η Άσκηση Σύνθετες τοπολογίες, διακοπή συνδέσεων, δυναμική δρομολόγηση.
Προσομοίωση Δικτύων 3η Άσκηση Δημιουργία, διαμόρφωση μελέτη σύνθετων τοπολογιών.
Διδασκαλια και Μαθηση με Χρηση ΤΠΕ_2 Βασιλης Κολλιας
Αριθμητική Επίλυση Διαφορικών Εξισώσεων 1. Συνήθης Δ.Ε. 1 ανεξάρτητη μεταβλητή x 1 εξαρτημένη μεταβλητή y Καθώς και παράγωγοι της y μέχρι n τάξης, στη.
Ψηφιακά Παιχνίδια και μάθηση Δρ. Νικολέτα Γιαννούτσου Εργαστήριο Εκπαιδευτικής Τεχνολογίας.
Διαχείριση Διαδικτυακής Φήμης! Do the Online Reputation Check! «Ημέρα Ασφαλούς Διαδικτύου 2015» Ε. Κοντοπίδη, ΠΕ19.
Σπύρος Πρασσάς Πανεπιστήμιο Αθηνών Μηχανικές αρχές και η εφαρμογή τους στην Ενόργανη Γυμναστική PP #4.
Guide to Business Planning The Value Chain © Guide to Business Planning A principal use of value chain analysis is to identify a strategy mismatch between.
Μαθαίνω με “υπότιτλους”
Αντικειμενοστραφής Προγραμματισμός ΙΙ
Acts 4:34 – 5:11 God’s warning shot.
Φάσμα παιδαγωγικής ανάπτυξης
Matrix Analytic Techniques
Ψηφιακeς ιδEες και αξIες
Αν. Καθηγητής Γεώργιος Ευθύμογλου
Class X: Athematic verbs II
JSIS E 111: Elementary Modern Greek
φίλτρα IIR (Infinite Impulse Response)
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
International Hospitality Management MC Employability Scheme
SANITARY AND STORM SEWER DESIGN A Direct Algebraic Solution
Example Rotary Motion Problems
This show was edited by Mike:
Το ιερό δισκοπότηρο της ΙΕ γλωσσολογίας
Δικτυώματα (Δικτυωτοί Φορείς)
Εκπαιδευτική ρομποτική
JSIS E 111: Elementary Modern Greek
ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ
Solving Trig Equations
aka Mathematical Models and Applications
GLY 326 Structural Geology
Find: angle of failure, α
ΕΝΣΤΑΣΕΙΣ ΠΟΙΟΣ? Όμως ναι.... Ένα σκάφος
Find: minimum B [ft] γcon=150 [lb/ft3] γT=120 [lb/ft3] Q φ=36˚
ΤΙ ΕΙΝΑΙ ΤΑ ΜΟΆΙ;.
This show was edited by Mike:
Find: ρc [in] from load γT=110 [lb/ft3] γT=100 [lb/ft3]
Find: ρc [in] from load γT=106 [lb/ft3] γT=112 [lb/ft3]
Find: σ1 [kPa] for CD test at failure
Find: KBE PBE=180 [k] AB, BC  W12x14 compression fy= 36 [ksi]
Find: σ’v at d=30 feet in [lb/ft2]
τ [lb/ft2] σ [lb/ft2] Find: c in [lb/ft2] σ1 = 2,000 [lb/ft2]
Financial Market Theory
Find: Force on culvert in [lb/ft]
Τεχνολογία & εφαρμογές μεταλλικών υλικών
3Ω 17 V A3 V3.
A Find: Ko γT=117.7 [lb/ft3] σh=2,083 Water Sand
Law of Sine Chapter 8.2.
Deriving the equations of
Variable-wise and Term-wise Recentering
Δοκοί Διαγράμματα Τεμνουσών Δυνάμεων και Καμπτικών Ροπών
Find: LBE [ft] A LAD =150 [ft] B LDE =160 [ft] R = 1,000 [ft] C D E
Find: ρc [in] from load (4 layers)
Εθνικό Μουσείο Σύγχρονης Τέχνης Faceforward … into my home!
Erasmus + An experience with and for refugees Fay Pliagou.
Class X: Athematic verbs II © Dr. Esa Autero
ΠΟΛΙΤΙΚΗ ΟΙΚΟΝΟΜΙΑ ΤΗΣ ΠΑΓΚΟΣΜΙΟΠΟΙΗΣΗΣ
Trigonometry – Sine & Cosine – Angles – Demonstration
Μεταγράφημα παρουσίασης:

Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚ Find the angle of internal friction. [pause] In this problem, ---

Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚ a sand sample was tested in a consolidated drained triaxial test, ---

Find: φ σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand 34˚ 36˚ 38˚ and we’ve been given the confining stress and the deviator stress, at failure.

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] In problems like this one, --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test σ3 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] confining stress the confining stress, sigma 3, and the axial stress, sigma 1 --- axial stress σ [lb/ft2] σ3 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test σ3 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] confining stress are plotted on a horizontal axis, and connected by a semi circle. axial stress σ [lb/ft2] σ3 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test σ3 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] A rupture line is then traced tangent to that semicircle, --- σ [lb/ft2] σ3 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test φ σ3 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] and the angle of internal friction is determined, by measuring the angle between that rupture line, and a horizontal line. This same angle is sometimes called the fiction angle. For this example, φ σ [lb/ft2] σ3 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test φ σ3 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] the point where the rupture line and semicircle intersect was arbitrarily chosen, however, --- φ σ [lb/ft2] σ3 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test φ σ3 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] any one of these points could have been chosen, --- φ σ [lb/ft2] σ3 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test σ3 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] resulting in an arbitrary rupture line --- σ [lb/ft2] σ3 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test σ3 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] φ5 φ4 φ3 and an arbitrary friction angle. φ2 φ1 σ [lb/ft2] σ3 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test σ3 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] φ5 φ4 φ3 However, if we had data from a second test, --- φ2 φ1 σ [lb/ft2] σ3 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test σ3 σ3 σ1 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] φ5 φ4 φ3 we could plot it on the same graph, --- φ2 φ1 σ [lb/ft2] σ3 σ3 σ1 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test σ3 σ3 σ1 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] φ5 φ4 φ3 draw the rupture line, and be certain of it’s slope, and hence, it’s friction angle. φ2 φ1 σ [lb/ft2] σ3 σ3 σ1 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test σ3 σ3 σ1 σ1 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] τ [lb/ft2] φ5 φ4 φ3 Also, the cohesion of the soil would be known as the shear stress when there is no confining stress. φ2 φ1 c σ [lb/ft2] σ3 σ3 σ1 σ1

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand τ [lb/ft2] Returning to our problem, --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 σ3 σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand τ [lb/ft2] we have a confining stress at failure of 400 pounds per square feet, --- σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 σ3 σ3 = 400 [lb/ft2] CD test σ3=400 Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand τ [lb/ft2] so sigma 3 is added to the plot. σ [lb/ft2] σ3=400

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 σ3 σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand τ [lb/ft2] σ1 = σ3 + Δσ The axial stress at failure is the confining stress at failure plus the deviator stress at failure. σ [lb/ft2] σ3=400

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 σ3 σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand τ [lb/ft2] σ1 = σ3 + Δσ The values are plugged in, and --- σ [lb/ft2] σ3=400

τ [lb/ft2] σ [lb/ft2] Find: φ σ3 σ3 σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand τ [lb/ft2] σ1 = σ3 + Δσ = 1,400 [lb/ft2] our axial stress at failure is 1,400 pounds per square feet, --- σ [lb/ft2] σ3=400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand τ [lb/ft2] σ1 = σ3 + Δσ = 1,400 [lb/ft2] σ1 and added to the plot. σ [lb/ft2] σ3=400 σ1=1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand τ [lb/ft2] σ1 = σ3 + Δσ = 1,400 [lb/ft2] σ1 Next we draw our semicircle, however we don’t have a second set of test data to help determine the point of tangency, --- σ [lb/ft2] 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand τ [lb/ft2] σ1 = σ3 + Δσ = 1,400 [lb/ft2] σ1 But we do know the soil is a sand in a consolidated drained condition, which means --- σ [lb/ft2] 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Sand τ [lb/ft2] σ1 = σ3 + Δσ = 1,400 [lb/ft2] σ1 the cohesion is zero, and the rupture line passes through the origin of the graph. σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand τ [lb/ft2] σ1 = σ3 + Δσ = 1,400 [lb/ft2] σ1 The rupture line is plotted, --- σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 σ3 = 400 [lb/ft2] CD test Sand σ3 = 400 [lb/ft2] CD test Δσ = 1,000 [lb/ft2] Sand τ [lb/ft2] σ1 = σ3 + Δσ = 1,400 [lb/ft2] σ1 φ and the angle of internal friction is identified. σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 φ 400 1,400 Sand c=0 For a cohesionless soil, --- σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ1 1+sin(φ) = σ3 1-sin(φ) σ3 σ3 Sand for c=0 only CD test Sand τ [lb/ft2] σ1 φ we can solve for the angle of internal friction using this equation σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ1 1+sin(φ) = σ3 1-sin(φ) σ3 σ3 Sand for c=0 only CD test Sand σ1-σ3 φ=sin-1 τ [lb/ft2] σ1+σ3 σ1 φ Where the friction angle is the arc sine of the quotient of sigma 1 minus sigma 3, divided by sigma 1 plus sigma 3. σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ1 1+sin(φ) = σ3 1-sin(φ) σ3 σ3 Sand for c=0 only CD test Sand σ1-σ3 φ=sin-1 τ [lb/ft2] σ1+σ3 σ1 φ 1,400 Plugging in 1,400 pounds per square feet in for the axial stress, --- σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ1 1+sin(φ) = σ3 1-sin(φ) σ3 σ3 Sand for c=0 only CD test Sand σ1-σ3 φ=sin-1 τ [lb/ft2] σ1+σ3 σ1 400 φ 1,400 and 400 pounds per square feet for the confining stress, --- σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ1 1+sin(φ) = σ3 1-sin(φ) σ3 σ3 Sand for c=0 only CD test Sand σ1-σ3 φ=sin-1 τ [lb/ft2] σ1+σ3 σ1 400 φ 1,400 φ=33.75˚ the friction angle computes to 33.75 degrees. σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ1 1+sin(φ) = σ3 1-sin(φ) σ3 σ3 34˚ 36˚ 38˚ D) 40˚ Sand for c=0 only CD test Sand σ1-σ3 φ=sin-1 τ [lb/ft2] σ1+σ3 σ1 400 φ 1,400 φ=33.75˚ Looking back at our possible solutions, --- σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ1 1+sin(φ) = σ3 1-sin(φ) σ3 σ3 34˚ 36˚ 38˚ D) 40˚ Sand for c=0 only CD test Sand σ1-σ3 φ=sin-1 τ [lb/ft2] σ1+σ3 σ1 400 φ 1,400 φ=33.75˚ the answer is A. [pause] This equation for the friction angle can be derived --- Answer: A σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 Sand Sand with the use of trigonometry. σ [lb/ft2]

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 φ 400 1,400 Sand c=0 If we draw out our semicircle and rupture line as before, --- σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 φ 400 1,400 Sand c=0 And we add a point at the center of the circle, --- σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 φ 400 1,400 Sand c=0 And a third point and the tangent, --- σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 φ 400 1,400 Sand c=0 we can draw out the a right triangle. σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 φ 400 1,400 Sand φ The friction angle is this interior angle of the triangle. φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 φ 400 1,400 Sand φ We make a copy of this triangle and --- φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ x σ1 σ3 σ3 CD test σ1 φ 400 1,400 Sand φ we define x as the --- φ x φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ x σ1 σ3 σ3 CD test σ1 φ 400 1,400 x=circle center σ3 σ3 Sand CD test Sand τ [lb/ft2] σ1 φ distance from the origin to the center of the semicircle, --- φ x φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ x σ1 σ1+σ3 σ3 σ3 CD test σ1 φ 400 1,400 x=circle center σ1+σ3 σ3 σ3 Sand = 2 CD test Sand τ [lb/ft2] σ1 φ which is average of the confining and axial stresses. φ x φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ x σ1 σ1+σ3 σ3 σ3 CD test σ1 φ 400 1,400 x=circle center σ1+σ3 σ3 σ3 Sand = 400[lb/ft2] 2 CD test Sand τ [lb/ft2] σ1 φ Plugging in 400 pounds per square feet for the confining stress, --- φ x φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ x σ1 σ1+σ3 σ3 σ3 CD test σ1 φ 400 1,400 x=circle center σ1+σ3 σ3 σ3 Sand = 400[lb/ft2] 2 1,400[lb/ft2] CD test Sand τ [lb/ft2] σ1 φ and 1,400 pounds per square feet for the axial stress, --- φ x φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ x σ1 σ1+σ3 σ3 σ3 CD test σ1 φ 400 1,400 x=circle center σ1+σ3 σ3 σ3 Sand = 400[lb/ft2] 2 1,400[lb/ft2] CD test Sand = 900 [lb/ft2] τ [lb/ft2] σ1 φ our value of x is 900 pounds per square feet. φ x φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ1+σ3 σ3 σ3 CD test σ1 φ 400 1,400 x=circle center σ1+σ3 σ3 σ3 Sand = 400[lb/ft2] 2 1,400[lb/ft2] CD test Sand = 900 [lb/ft2] τ [lb/ft2] σ1 φ --- φ 900 φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ r σ1 σ1+σ3 σ3 σ3 CD test σ1 φ 400 1,400 x=circle center σ1+σ3 σ3 σ3 Sand = 400[lb/ft2] 2 1,400[lb/ft2] CD test Sand = 900 [lb/ft2] τ [lb/ft2] r=circle radius σ1 φ r Next we define the radius of the semi circle as r. φ 900 φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ r σ1 σ1+σ3 σ3 σ3 CD test σ1-σ3 σ1 400 x=circle center σ1+σ3 σ3 σ3 Sand = 400[lb/ft2] 2 1,400[lb/ft2] CD test Sand = 900 [lb/ft2] τ [lb/ft2] r=circle radius σ1-σ3 σ1 = 2 r Which equals the axial stress minus the confining stress, all divided by 2. φ 900 φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ r σ1 σ1+σ3 σ3 σ3 CD test σ1-σ3 σ1 400 x=circle center σ1+σ3 σ3 σ3 Sand = 400[lb/ft2] 2 1,400[lb/ft2] CD test Sand = 900 [lb/ft2] τ [lb/ft2] r=circle radius σ1-σ3 σ1 1,400[lb/ft2] = 2 400[lb/ft2] r After plugging in the values like before, we learn the --- φ 900 φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ r σ1 σ1+σ3 σ3 σ3 CD test σ1-σ3 σ1 400 x=circle center σ1+σ3 σ3 σ3 Sand = 400[lb/ft2] 2 1,400[lb/ft2] CD test Sand = 900 [lb/ft2] τ [lb/ft2] r=circle radius σ1-σ3 σ1 1,400[lb/ft2] = 2 400[lb/ft2] r radius is 500 pounds per square feet. =500[lb/ft2] φ 900 φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ1+σ3 σ3 σ3 CD test σ1-σ3 σ1 400 x=circle center σ1+σ3 σ3 σ3 Sand = 400[lb/ft2] 2 1,400[lb/ft2] CD test Sand = 900 [lb/ft2] τ [lb/ft2] r=circle radius σ1-σ3 σ1 1,400[lb/ft2] = 2 400[lb/ft2] 500 --- =500[lb/ft2] φ 900 φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 φ 400 1,400 Sand 500 Keeping in mind this is a right triangle, --- φ 900 φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 φ 400 1,400 r φ=sin-1 r x σ3 σ3 Sand CD test Sand τ [lb/ft2] σ1 φ 500 the friction angle is simply the arc sine of the opposite leg of the triangle divided by the hypotenuse of the triangle. φ 900 φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 φ 400 1,400 r φ=sin-1 r x σ3 σ3 Sand 500[lb/ft2] CD test Sand τ [lb/ft2] σ1 φ 500 Our values for are added for the radius, --- φ 900 φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ σ1 σ3 σ3 CD test σ1 φ 400 1,400 r φ=sin-1 r x σ3 σ3 Sand 500[lb/ft2] CD test Sand 900[lb/ft2] τ [lb/ft2] σ1 φ 500 and for the distance to center, --- φ 900 φ σ [lb/ft2] c=0 400 1,400

τ [lb/ft2] σ [lb/ft2] Find: φ φ=33.75˚ σ1 σ3 σ3 CD test σ1 φ 400 1,400 φ=sin-1 r x σ3 σ3 Sand 500[lb/ft2] CD test Sand 900[lb/ft2] τ [lb/ft2] φ=33.75˚ σ1 φ 500 and we compute the same friction angle as before. φ 900 φ σ [lb/ft2] c=0 400 1,400

( ) ? γclay=53.1[lb/ft3] Index σ’v = Σ φ γ Δ d H*C σfinal ρcn= log Find: σ’v ρc d = 30 feet (1+wc)*γw wc+(1/SG) σ’v = Σ φ γ Δ d d Sand 10 ft γT=100 [lb/ft3] 100 [lb/ft3] 10 [ft] 20 ft Clay = γsand dsand +γclay dclay A W S V [ft3] W [lb] 40 ft text wc = 37% ? Δh 20 [ft] (5 [cm])2 * π/4 ( ) H*C σfinal ρcn= 1+e σinitial log ‘