ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ (από την τροχιά του Bohr στο τροχιακό της κβαντομηχανικής) ΚΩΝΣΤΑΝΤΟΥΡΟΥ ΕΥΓΕΝΙΑ Β2.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ
Advertisements

ΔομΗ του ΑτΟμου.
ΧΗΜΕΙΑ Γ’ ΛΥΚΕΙΟΥ ΚΕΦ.1: 1.1 ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ BOHR (α) ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΑΤΟΜΙΚΟ ΠΡΟΤΥΠΟ BOHR. 1913BOHR 1η ΣΥΝΘΗΚΗ (MHXANIKH): Τα ηλεκτρόνια περιφέρονται.
Σωματιδιακή Φυσική: Από το Ηλεκτρόνιο μέχρι το Higgs και το Μεγάλο Αδρονικό Επιταχυντή (LHC) στο CERN Κωνσταντίνος Φουντάς Καθηγητής Παν/μίου Ιωαννίνων.
ΕΡΓΑΣΙΑ ΦΥΣΙΚΗΣ. Έρβιν Σρέντινγκερ ● Ο Έρβιν Σρέντινγκερ (Erwin Schrödinger, 12 Αυγούστου Ιανουαρίου 1961) ήταν Αυστριακός φυσικός. Ασχολήθηκε.
 Ο ρόλος της διατροφής στην καθημερινή ζωή και την άσκηση.  Τι ιδιαίτερες ανάγκες έχετε.  Ο ρόλος των θρεπτικών συστατικών στη διατροφή και την άσκηση.
Ενότητα 1: Γενικά - Εισαγωγή Όνομα Καθηγητή: Χριστόφορος Κροντηράς Τμήμα Φυσικής.
Ενότητα 10: Κβαντομηχανική και μονοδιάστατα προβλήματα Β’ Όνομα Καθηγητή: Χριστόφορος Κροντηράς Τμήμα Φυσικής.
ΠΡΑΚΤΙΚΗ ΣΤΗΝ ΚΟΙΝΟΤΗΤΑ Πρελορέντζου Μαρία (21128) 8 ος Παιδικός Σταθμός Δήμου Ελληνικού- Αργυρούπολης ( 25η οδός, πλατεία Αγίας Τριάδας )
Ενότητα 6: Υλικά κύματα Όνομα Καθηγητή: Χριστόφορος Κροντηράς Τμήμα Φυσικής.
Συντελεστής τριβής ολίσθησης μ κ Συντελεστής στατικής τριβής μ σ Η τριβή και η κάθετη δύναμη οφείλονται σε διαμοριακές δυνάμεις (ηλεκτροστατικής φύσης).
Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Από τα κουάρκ μέχρι το Σύμπαν: Μια σύντομη περιήγηση
Πρωτόνια, νετρόνια και ηλεκτρόνια
ΚΥΡΙΟΣ ΚΒΑΝΤΙΚΟΣ ΑΡΙΘΜΟΣ
Η ΤΕΧΝΗ… ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΕΠΙΣΤΗΜΟΝΙΚΗ ΟΡΟΛΟΓΙΑ
Project για την κολύμβηση για όλες τις ηλικίες και κατηγορίες ατόμων
Ερωτήσεις 1. Στην ευθύγραμμη ομαλά επιταχυνόμενη κίνηση: α. η ταχύτητα είναι σταθερή β. ο ρυθμός μεταβολής της ταχύτητας είναι σταθερός γ. ο ρυθμός μεταβολής.
ΧΠΕ - ΟΙ ΠΟΡΟΙ ΣΤΟ MS PROJECT
Παιδαγωγικό Τμήμα Δημοτικής Εκπαίδευσης
ΚΑΝΟΝΙΚΗ ΚΑΤΑΝΟΜΗ Η πιο σημαντική κατανομή στη στατιστική είναι η κανονική κατανομή. Η Κανονική Κατανομή έχει τεράστια σημασία στη Στατιστική, στην Οικονομετρία,
ΙΣΧΥΡΩΣ ΤΡΟΠΟΠΟΙΗΜΕΝΑ ΥΔΑΤΙΚΑ ΣΥΣΤΗΜΑΤΑ
Η ΔΟΜΗ ΤΗΣ ΥΛΗΣ ΤΟ ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ.
Μετουσίωση Πρωτεϊνών Επιμέλεια: Ηλίας Μαυροματίδης, ΕΚΦΕ Νέας Σμύρνης
Ανδρέας Ιωάννου Κασσέτας
Μερκ. Παναγιωτόπουλος-Φυσικός
Μέτρηση όγκου Εργαστηριακή Άσκηση 1 B′ Γυμνασίου
Από τον Δημόκριτο μέχρι το σύγχρονο κβαντικό άτομο.
ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ
Ο άνθρωπος πάντα αισθανόταν εγκλωβισμένος στη γη…
Η δομή του ατόμου . ΙΙ. Το σύγχρονο ατομικό πρότυπο.
2.2.1– Μείγματα.
ΙΙΙ. Ηλεκτρονική δόμηση.
ΧΗΜΕΙΑ Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ.
ΜΕΤΡΗΣΗ ΜΗΚΟΥΣ - ΕΜΒΑΔΟΥ – ΟΓΚΟΥ.
ΕΚΦΕ Ν. Σμύρνης Ιδέες για αξιολόγηση, Ασκήσεις – Προβλήματα – Εργασίες (Φ. Ε. 5) Ηλ. Μαυροματίδης.
Νίκος Κ. Μπάρκας ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Δ.Π.Θ. ΤΜΗΜΑ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΜΑΘΗΜΑ : ΟΙΚΟΔΟΜΙΚΗ ΙΙΙ Σκάλες Διδάσκων Νίκος.
Ηλεκτρικό φορτίο - Ηλεκτρική δύναμη (1.1 – 1.4)
ΠΑΡΟΥΣΙΑΖΕΙ… Β΄ Λυκείου 3ο ΓΕΛ Εχεδώρου.
ΣΧΗΜΑ Σχηματική παρουσίαση της περιοριστικής συνθήκης του Bohr
ΣΧΗΜΑ 4.1 Σχηματική παρουσίαση των δυνάμεων που αναπτύσσονται στο μονοηλεκτρονικό άτομο Η (αριστερά) και στο πολυηλεκτρονικό άτομο He (δεξιά).
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 7 & 8 Κβαντικοί αριθμοί.
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 4 Mέγεθος πυρήνα Κώστας.
Νίκος Καζαντζάκης
Η δομή του ατόμου . ΙΙ. Το σύγχρονο ατομικό πρότυπο.
ΙΙΙ. Ηλεκτρονική δόμηση.
Kυματική θεωρία της ύλης (1924) Κάθε κινούμενο μικρό σωματίδιο, π. χ
Δρ. Στεφανόπουλος Γ. Βασίλειος
ΣΧΗΜΑ 4.1 Σχηματική παρουσίαση των δυνάμεων που αναπτύσσονται στο μονοηλεκτρονικό άτομο Η (αριστερά) και στο πολυηλεκτρονικό άτομο He (δεξιά).
ΔομΗ του ΑτΟμου.
Διατήρηση της Ενέργειας
ΣΧΗΜΑ 4.1 Σχηματική παρουσίαση των δυνάμεων που αναπτύσσονται στο μονοηλεκτρονικό άτομο Η (αριστερά) και στο πολυηλεκτρονικό άτομο He (δεξιά).
Two Theories of Bonding
Μορφολογική μελέτη ΑΣΑ Δήμου Σύρου
Αποτελέσματα μορφολογικής μελέτης σύστασης ΑΣΑ Δήμου Σύρου
Χημεία του Άνθρακα.
Κεφάλαιο 1ο Το άτομο Το άτομο είναι το πιο μικρό κομμάτι ενός στοιχείου. Στο κέντρο βρίσκεται ο πυρήνας με τα πρωτόνια p+, που είναι θετικά φορτισμένα.
Ο Ομοιοπολικός δεσμός ΧΗΜΕΙΑ Α ΄ ΛΥΚΕΙΟΥ.
Χημεία του Άνθρακα.
ΙΙΙ. Ηλεκτρονική δόμηση.
ΙΙΙ. Ηλεκτρονική δόμηση.
ΑΠΟΚΑΤΑΣΤΑΣΗ ΙΣΤΟΡΙΚΩΝ ΚΤΙΡΙΩΝ ΕρΓΑΣΤΗΡΙΟ 2018
ΔομΗ του ΑτΟμου.
(Έκτη έκδοση, Εκδόσεις Τραυλός)
ΔομΗ του ΑτΟμου.
Κεφάλαιο 6 Η Κανονική Κατανομή.
Στοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης Μάθημα 24 Μποζονικός διαδότης,
ΔομΗ του ΑτΟμου.
Εισαγωγή στην Οργανική Χημεία
Διατροφικές διαταραχές και νοσηλευτική παρέμβαση
Μεταγράφημα παρουσίασης:

ΗΛΕΚΤΡΟΝΙΑΚΗ ΔΟΜΗ ΤΩΝ ΑΤΟΜΩΝ (από την τροχιά του Bohr στο τροχιακό της κβαντομηχανικής) ΚΩΝΣΤΑΝΤΟΥΡΟΥ ΕΥΓΕΝΙΑ Β2

Η εξέλιξη του ατομικού μοντέλου Στη διάρκεια των τελευταίων 125 χρόνων η εικόνα που έχουμε για το άτομο έχει αλλάξει δραστικά Από την απλή συμπαγή σφαίρα σε Ένα σύνθετο μοντέλο στο οποίο κυριαρχούν στατιστική και η πιθανότητες.

Ιστορία Το 1900 ο Μαξ Πλανκ  μελετά την ακτινοβολία του μέλανος (μαύρου) σώματος. Προσπαθεί να βελτιώσει μια σχέση του Wien που αφορά την κατανομή της ακτινοβολούμενης ενέργειας στις διάφορες συχνότητες. Το πετυχαίνει χρησιμοποιώντας την υπόθεση πως το φως εκπέμπεται από ένα μέλαν σώμα μόνο σε συγκεκριμένα ποσά ενέργειας (κβάντα) ανάλογα με τη συχνότητά του, δηλαδή ακέραια πολλαπλάσια της ποσότητας Ε = hν όπου ν η συχνότητα και h μια σταθερά (που ονομάστηκε σταθερά του Πλανκ).

Το 1905 ο Αϊνστάιν σε μια προσπάθεια ερμηνείας του φωτοηλεκτρικού φαινομένου γενικεύει την ιδέα του Πλανκ προτείνοντας ότι η ηλεκτρομαγνητική ακτινοβολία συνίσταται από κβάντα. Κάθε κβάντο περιέχει την ελάχιστη δυνατή ενέργεια που μπορεί να υπάρξει για κάθε συγκεκριμένο μήκος κύματος. Το 1906 χρησιμοποιεί την έννοια τηςκβάντωσης για να ερμηνεύσει την ειδική θερμότητα των στερεών σε χαμηλές θερμοκρασίες. Το 1911 ο Έρνεστ Ράδερφορντ  προτείνει το πλανητικό μοντέλο για το άτομο, σύμφωνα με το οποίο τα ηλεκτρόνια κινούνται γύρω από ένα πυρήνα που συγκεντρώνει το μεγαλύτερο μέρος της μάζας του ατόμου. Το μοντέλο αυτό ήταν ασυμβίβαστο με την κλασική φυσική διότι σύμφωνα με αυτήν τα ηλεκτρόνια θα έπρεπε κατά την κίνησή τους να εκπέμπουν ακτινοβολία με αποτέλεσμα να χάνουν ενέργεια και έτσι τελικά να πέφτουν πάνω στον πυρήνα. Τα άτομα επομένως θα ήταν ασταθή. Το 1913 ο Μπορ  προτείνει ότι η στροφορμή των ηλεκτρονίων που κινούνται σε τροχιά γύρω από τον πυρήνα του ατόμου μπορεί να είναι μόνο ακέραιο πολλαπλάσιο της ποσότητας h/2π, δηλαδή εμφανίζεται και αυτή σε κβάντα. Από αυτό προέκυπτε ότι οι τροχιές πάνω στις οποίες μπορούσαν να βρίσκονται τα ηλεκτρόνια ήταν συγκεκριμένες και επομένως κι η ενέργειά τους το ίδιο

Το ατομικό πρότυπο του Bohr 1η συνθήκη (μηχανική συνθήκη) Το ηλεκτρόνιο του ατόμου περιφέρεται γύρω από τον ακίνητο πυρήνα με την επίδραση της δύναμης Coulomb που δέχεται από αυτόν. Το ηλεκτρόνιο του ατόμου κινείται σε ορισμένες μόνο κυκλικές τροχιές (επιτρεπόμενες τροχιές). Niels Bohr

η οποία υπολογίζεται από τον τύπο: Σε κάθε επιτρεπόμενη τροχιά το ηλεκτρόνιο έχει καθορισμένη ενέργεια (κβαντισμένη ενέργεια) η οποία υπολογίζεται από τον τύπο: όπου : n=1, 2, 3, ... ο κύριος κβαντικός αριθμός, που καθορίζει την ενεργειακή στάθμη του ηλεκτρονίου. Το αρνητικό πρόσημο έχει τη φυσική έννοια ότι όσο μεγαλώνει η τιμή του n (δηλ το ηλεκτρόνιο απομακρύνεται από τον πυρήνα), τόσο μεγαλώνει η ενέργεια του ηλεκτρονίου. Όταν το ηλεκτρόνιο απομακρυνθεί αρκετά από τον πυρήνα, τότε η ενέργειά του παίρνει τη μέγιστη τιμή της (Ε∞= 0). [ιοντισμός : η κατάσταση του ατόμου που «έχει χάσει» το ηλεκτρόνιό του]

Θεμελιώδης κατάσταση ενός ατόμου: Όταν τα ηλεκτρόνια του ατόμου κινούνται κατά το δυνατό πλησιέστερα στον πυρήνα (δηλαδή έχουν την ελάχιστη δυνατή ενέργεια). Στην περίπτωση αυτή όπου τα ηλεκτρόνια κινούνται σε επιτρεπόμενες τροχιές, το άτομο δεν εκπέμπει ενέργεια. 1 Άτομο Η σε θεμελιώδη κατάσταση

Το ατομικό πρότυπο του Bohr (συνέχεια) Niels Bohr 2η συνθήκη (οπτική συνθήκη) Το ηλεκτρόνιο εκπέμπει ή απορροφά ενέργεια υπό μορφή ακτινοβολίας μόνο όταν μεταπηδά από μια τροχιά σε μια άλλη, όταν δηλαδή αλλάζει ενεργειακή στάθμη. Η ακτινοβολία εκπέμπεται όχι με συνεχή τρόπο αλλά σε μικρά πακέτα (κβάντα). Τα κβάντα φωτός ή ηλεκτρομαγνητικής ακτινοβολίας ονομάζονται γενικότερα φωτόνια.

Διεγερμένη κατάσταση ενός ατόμου: Όταν, με απορρόφηση ενέργειας, τα ηλεκτρόνια (ένα ή περισσότερα) του ατόμου μεταπηδούν από τροχιά χαμηλότερης ενέργειας σε τροχιά μεγαλύτερης ενέργειας. Στην περίπτωση αυτή το άτομο απορροφά κβαντισμένα ποσά ενέργειας δίνοντας έτσι τα γραμμικά φάσματα απορρόφησης. Άτομο Η σε διεγερμένες καταστάσεις

Αποδιέγερση ενός ατόμου: συμβαίνει όταν τα ηλεκτρόνια (ένα ή περισσότερα) του ατόμου μεταπίπτουν από τροχιά υψηλότερης ενέργειας σε τροχιά μικρότερης ενέργειας. Στην περίπτωση αυτή το άτομο εκπέμπει κβαντισμένα ποσά ενέργειας δίνοντας έτσι τα γραμμικά φάσματα εκπομπής. Αποδιεγέρσεις ατόμου Η

Συνεχή φάσματα εκπομπής δίνουν τα διάπυρα στερεά και υγρά σώματα. Σημείωση : Συνεχή φάσματα εκπομπής δίνουν τα διάπυρα στερεά και υγρά σώματα. Τα συνεχή φάσματα εκπομπής δε διαφέρουν μεταξύ τους, οπότε η μελέτη τους δεν παρουσιάζει ενδιαφέρον, αφού δεν μας προσφέρουν καμία πληροφορία για τη χημική σύσταση του σώματος που εκπέμπει. Η μοναδική πληροφορία που δίνουν είναι για τη θερμοκρασία του υλικού.

Όταν το ηλεκτρόνιο του ατόμου του υδρογόνου μεταπίπτει από μία επιτρεπόμενη τροχιά, με ενέργεια Εαρχ., σε μια άλλη επιτρεπόμενη τροχιά Ετελ., μικρότερης ενέργειας, τότε εκπέμπει φωτόνιο συχνότητας ν και ισχύει: όπου : h : η σταθερά του Plank (h=6,63·10-34J·s) ΔΕ: η ενέργεια της εκπεμπόμενης ακτινοβολίας

Η κυματική θεωρία της ύλης To φως, όπως και κάθε κινούμενο μικρό σωματίδιο π.χ. ηλεκτρόνιο, παρουσιάζει διττή φύση, σωματιδίου (κβάντα) και κύματος (ηλεκτρομαγνητικό κύμα). Louis de Broglie  Η φύση του φωτός είναι μία (δεν αλλάζει συνεχώς), απλώς, ανάλογα με τις πειραματικές συνθήκες, άλλοτε εκδηλώνεται ο σωματιδιακός και άλλοτε ο κυματικός του χαρακτήρας. Όπως και σε καθεμία από τις παρακάτω εικόνες συνυπάρχουν δύο αντικείμενα:

ΕΞΙΣΩΣΗ ΤΟΥ de Broglie: όπου : λ : το μήκος κύματος του σωματιδίου (m) h : η σταθερά του Plank (h=6,63·10-34J·s) m : η μάζα του κινούμενου σωματιδίου (kg) u : η ταχύτητά του (m/s) Για να εκδηλωθεί ο κυματικός χαρακτήρας ενός σωματιδίου θα πρέπει αυτό να έχει μικρή μάζα και μεγάλη ταχύτητα.

Η αρχή της αβεβαιότητας του Heisenberg Werner Heisenberg 1901-1976 Δεν μπορούμε να υπολογίσουμε με ακρίβεια ταυτόχρονα τη θέση και την ορμή ενός ηλεκτρονίου  Όσο μεγαλύτερη ακρίβεια έχουμε στον προσδιορισμό της θέσης του σωματιδίου, τόσο μεγαλύτερο είναι το σφάλμα στον προσδιορισμό της ορμής του και αντίστροφα. Στην περίπτωση των υποατομικών σωματιδίων τα σφάλματα αυτά δεν μπορούν να θεωρηθούν αμελητέα.

Συνεπώς : καθορισμένη ενέργεια και ταυτόχρονα ακριβής θέση για το ηλεκτρόνιο Κυκλικές τροχιές του Bohr αν καθορισμένη ενέργεια τότε πιθανότητα ύπαρξης του ηλεκτρονίου σε ορισμένη θέση Αρχή αβεβαιότητας του Heisenberg Έτσι, η αρχή της αβεβαιότητας οδηγεί αυτόματα στην κατάρριψη του μοντέλου του Bohr και την εισαγωγή του κβαντομηχανικού μοντέλου.

Το κβαντομηχανικό μοντέλο του ατόμου Erwin Schröedinger 1887-1961 Η κυματική εξίσωση του Schrödinger περιγράφει τη θέση των ηλεκτρονίων γύρω από το άτομο χρησιμοποιώντας πιθανότητες και όχι συγκεκριμένες τροχιές. Ένα ηλεκτρόνιο μπορούμε να πούμε ότι βρίσκεται οπουδήποτε γύρω από το άτομο, άλλοτε συχνότερα και άλλοτε σπανιότερα .

ΚΒΑΝΤΙΚΟΙ ΑΡΙΘΜΟΙ n : κύριος κβαντικός αριθμός l : δευτερεύων ή αζιμουθιακός αριθμός ml : μαγνητικός κβαντικός αριθμός ms : αριθμός του spin Οι τρεις πρώτοι προκύπτουν ως αριθμητικές λύσεις της εξίσωσης του Schrödinger για το άτομο του υδρογόνου, αλλά μπορούν να εφαρμοστούν και σε άλλα πολυηλεκτρονιακά άτομα. Κάθε δυνατή τριάδα (n, l, ml) οδηγεί σε μια λύση της εξίσωσης Schrödinger καθορίζοντας ένα συγκεκριμένο ατομικό τροχιακό.

n : ΚΥΡΙΟΣ ΚΒΑΝΤΙΚΟΣ ΑΡΙΘΜΟΣ Καθορίζει το μέγεθος του τροχιακού (ή του ηλεκτρονιακού νέφους) και την ενέργεια του ηλεκτρονίου, λόγω έλξης πυρήνα-ηλεκτρονίου. Παίρνει τιμές: n=1, 2, 3, …, 7, … n 1 2 3 4 5 6 7… Στιβάδα ή φλοιός K L M N O P Q… Κάθε τιμή του n αντιστοιχεί σε μία στιβάδα.

l : ΔΕΥΤΕΡΕΥΩΝ Ή ΑΖΙΜΟΥΘΙΑΚΟΣ ΚΒΑΝΤΙΚΟΣ ΑΡΙΘΜΟΣ Καθορίζει το σχήμα του τροχιακού, λόγω απώσεων μεταξύ των ηλεκτρονίων. Παίρνει τιμές: για ορισμένο n, τότε l=0, …, n-1 l 1 2 3 … Υποστιβάδα (ή αντίστοιχα ατομικά τροχιακά) s p d f Σχήμα σφαίρα 2 λοβοί Κάθε ζεύγος (n, l) αντιστοιχεί σε μία υποστιβάδα.

n l ml ms τροχιακά υποστιβάδες στιβάδες 1 +½ 1s (2e-) K -½ 2 2s L (8e-) -1 2py 2p (6e-) 2px +1 2pz

n l ml ms τροχιακά υποστιβάδες στιβάδες 3 +½ 3s (2e-) M (18) -½ 1 -1 3py 3p (6e-) 3px +1 3pz 2 -2 3d… 3d (10e-) +2

ml :ΜΑΓΝΗΤΙΚΟΣ ΚΒΑΝΤΙΚΟΣ ΑΡΙΘΜΟΣ Καθορίζει τον προσανατολισμό του τροχιακού, λόγω μαγνητικού πεδίου που δημιουργούν γύρω τους τα κινούμενα ηλεκτρόνια. Παίρνει τιμές:για ορισμένο l, τότε ml=-l,… 0…+l l 1 2 3 … ml -1, 0, +1 -2, -1, 0, +1, +2 ? Πλήθος τροχιακών (στην υποστιβάδα) (s) (p) 5 (d) 7 (f) Κάθε τριάδα (n, l, ml) ορίζει ένα ατομικό τροχιακό.

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΑΚΗΣ ΔΟΜΗΣΗΣ Η ηλεκτρονιακή δόμηση των ατόμων (δηλ. η συμπλήρωση των τροχιακών με ηλεκτρόνια) γίνεται ακολουθώντας τους παρακάτω τρεις κανόνες: Αρχή της ελάχιστης ενέργειας Απαγορευτική αρχή του Pauli Κανόνας του Hund Ας μην ξεχνάμε ότι στην ηλεκτρονιακή δομή των ατόμων οφείλεται η χημική συμπεριφορά τους!

Αρχή ελάχιστης ενέργειας Σε ένα πολυηλεκτρονιακό άτομο τα ηλεκτρόνια καταλαμβάνουν τροχιακά με τη μικρότερη ενέργεια, ώστε να αποκτήσουν τη μέγιστη σταθερότητα στη θεμελιώδη κατάσταση. Από ποιους παράγοντες εξαρτάται η ενέργεια των ηλεκτρονίων; Από την έλξη πυρήνα-ηλεκτρονίου  κβαντικός αριθμός n. Από την άπωση μεταξύ ηλεκτρονίωνκβαντικός αριθμός l.

Συγκρίνοντας την ενέργεια υποστιβάδων θεωρούμε ότι μικρότερη ενέργεια έχει εκείνη με το μικρότερο άθροισμά τους n+l Π.χ. η υποστιβάδα 3s (n+l=3+0=3) έχει μικρότερη ενέργεια από την υποστοιβάδα 3p (n+l=3+1=4). Έτσι πρώτα συμπληρώνεται με ηλεκτρόνια η 3s και μετά η 3p. Π.χ. η υποστιβάδα 3d (n+l=3+2=5) έχει μεγαλύτερη ενέργεια από την υποστοιβάδα 4s (n+l=4+0=4) Έτσι πρώτα συμπληρώνεται με ηλεκτρόνια η 4s και μετά η 3d. Π.χ. η υποστιβάδα 3d (n+l=3+2=5) έχει μεγαλύτερη ενέργεια από την υποστοιβάδα 4p (n+l=4+1=5) Αν έχουν το ίδιο άθροισμα, τότε μικρότερη ενέργεια έχει η υποστιβάδα με το μικρότερο n. Έτσι πρώτα συμπληρώνεται με ηλεκτρόνια η 3d και μετά η 4p.

Απαγορευτική αρχή του Pauli Σε ένα άτομο δεν είναι δυνατό να υπάρχουν δύο ηλεκτρόνια με ίδιους και τους τέσσερις κβαντικούς αριθμούς Συνεπώς, ένα τροχιακό “χωράει” μέχρι 2 ηλεκτρόνια με ίδιους (n, l, ml) και διαφορετικό ms. Wolfrang Pauli (1900-1958)

Μέγιστο πλήθος e- σε κάθε υποστοιβάδα. τιμή του l 1 2 3 υποστοιβάδα s p d f πλήθος τροχιακών 5 7 Τύπος : 2l+1 max αριθμό e- 6 10 14 Τύπος : 2(2l+1)