ΕΥΚΛΕΙΔΗΣ Γιάννης Ρίζος Κών/νος Βελαλής
Γενικές πληροφορίες Ο Ευκλείδης από την Αλεξάνδρεια (~ 350 π.Χ. - 270 π.Χ.), ήταν Έλληνας μαθηματικός, που δίδαξε και πέθανε στην Αλεξάνδρεια της Αιγύπτου, περίπου κατά την διάρκεια της βασιλείας του Πτολεμαίου Α΄. Στις μέρες μας είναι γνωστός ως ο «πατέρας» της Γεωμετρίας. Ο Ευκλείδης κατέχει μια κρίσιμη θέση στην ιστορία της Λογικής και των Μαθηματικών, καθώς είναι ο πρώτος που παράγει ένα αυστηρά δομημένο και συνεκτικό σύστημα προτάσεων (θεωρημάτων και πορισμάτων) με βάση ένα σύνολο ορισμών και 5 μόνο αρχικές αναπόδεικτες προτάσεις (αιτήματα). Κατ' αυτό το τρόπο περιέλαβε στο σύστημα αυτό και προτάσεις ήδη διατυπωμένες παλαιότερων σημαντικών μαθηματικών, όπως ο Θαλής, ο Πυθαγόρας, ο Θεαίτητος, ο Λεωδάμαντας και ο Εύδοξος.
Τα Στοιχεία του Ευκλείδη Το πιο γνωστό έργο του είναι τα Στοιχεία, που αποτελείται από 13 βιβλία. Εκεί, οι ιδιότητες των γεωμετρικών αντικειμένων και των ακεραίων αριθμών προκύπτουν από ένα σύνολο αξιωμάτων, εμπνέοντας την αξιωματική μέθοδο των μοντέρνων μαθηματικών. Παρ' ότι πολλά από τα θεωρήματα που περιέχονταν στα Στοιχεία ήταν ήδη γνωστά, ένα από τα επιτεύγματα του Ευκλείδη ήταν ότι τα παρουσίασε σε ένα ενιαίο, λογικά συμπαγές πλαίσιο. Το έργο του Ευκλείδη ήταν τόσο σημαντικό ώστε η γεωμετρία που περιέγραψε στα Στοιχεία του ονομάστηκε Ευκλείδεια, ενώ τα Στοιχεία σήμερα θεωρούνται ένα από τα σημαντικότερα μαθηματικά έργα όλων των εποχών.
Σχετικά με τη ζωή του Σχεδόν τίποτα δεν είναι γνωστό σχετικά με την ζωή του Ευκλείδη εκτός από αυτά που αναφέρονται στα βιβλία του και ελάχιστες βιογραφικές πληροφορίες που προέρχονται από αναφορές τρίτων. Ήταν ενεργό μέλος της βιβλιοθήκης της Αλεξάνδρειας και πιθανόν να είχε σπουδάσει στην Ακαδημία του Πλάτωνα στην Αθήνα. Έγινε γνωστός στην πόλη της Αθήνας για τις μαθηματικές του εργασίες και γι' αυτό προσκλήθηκε από τον Πτολεμαίο Α΄ στην Αλεξάνδρεια. Η διάρκεια της ζωής του, όπως και ο τόπος γέννησής του μας παραμένουν άγνωστα. Κατά τον Μεσαίωνα, πολλοί δυτικοί συγγραφείς τον ταύτισαν λανθασμένα με έναν κατά ένα αιώνα προγενέστερο Σωκρατικό φιλόσοφο, αποκαλώντας τον Ευκλείδη από τα Μέγαρα.
Ευκλείδεια γεωμετρία Η Ευκλείδεια γεωμετρία είναι ένα μαθηματικό σύστημα που αποδίδεται στον αλεξανδρινό Έλληνα μαθηματικό Ευκλείδη και περιγράφεται στο βιβλίο του γεωμετρίας με όνομα: τα Στοιχεία. Η μέθοδος του Ευκλείδη βασίζεται στην υπόθεση ενός μικρού συνόλου αξιωμάτων και στην εξαγωγή πολλών θεωρημάτων από αυτά. Αν και πολλά από τα αποτελέσματα της δουλείας του Ευκλείδη έχουν αναφερθεί νωρίτερα από άλλους μαθηματικούς, ο Ευκλείδης ήταν ο πρώτος που έδειξε πως αυτές οι προτάσεις μπορούν να εισαχθούν σε ένα περιεκτικό επαγωγικό και λογικό σύστημα. Τα Στοιχεία αρχίζουν με επιπεδομετρία που διδάσκεται στο σχολείο ως το πρώτο αξιωματικό σύστημα αλλά και τα πρώτα παραδείγματα επίσημης απόδειξης και στη συνέχεια ασχολούνται με στερεομετρία τριών διαστάσεων. Το μεγαλύτερο μέρος των Στοιχείων αποτελούν κομμάτια της σημερινής άλγεβρας και θεωρίας αριθμών, γραμμένα σε γλώσσα γεωμετρίας.
Ευκλείδεια γεωμετρία Για περισσότερα από δύο χιλιάδες χρόνια το επίθετο "Ευκλείδεια" γεωμετρία δεν ήταν απαραίτητο γιατί κανένα άλλο είδος γεωμετρίας δεν είχε δημιουργηθεί. Τα αξιώματα του Ευκλείδη διαισθητικά φαίνονταν τόσο προφανή (με πιθανή εξαίρεση το αξίωμα παραλληλίας) που κάθε θεώρημα που αποδεικνυόταν με αυτά κρινόταν σωστό με απόλυτη βεβαιότητα. Σήμερα παρ' όλα αυτά υπάρχουν πολλές ακόμα γεωμετρίες μη Ευκλείδειες που ανακαλύφθηκαν κατά τις αρχές του 19ου αιώνα. Ο μεγάλος φυσικός Άλμπερτ Αϊνστάιν μάλιστα είπε με την ανακάλυψη της θεωρίας της σχετικότητας ότι ο πραγματικός χώρος δεν είναι Ευκλείδειος, αλλά ο Ευκλείδειος χώρος είναι μια καλή προσέγγιση για περιοχές που το βαρυτικό πεδίο είναι αδύναμο.
Απόδειξη απ' τα Στοιχεία του Ευκλείδη Απόδειξη απ' τα Στοιχεία του Ευκλείδη. "Αν έχουμε ένα τυχαίο ευθύγραμμο τμήμα, τότε υπάρχει ένα ισόπλευρο τρίγωνο που θα έχει αυτό το τμήμα ως μια απ΄ τις πλευρές του". Η απόδειξη είναι κατασκευαστική. Το ισόπλευρο τρίγωνο ΑΒΓ φτιάχνεται αν κατασκευάσουμε δύο κύκλους Δ και Ε με κέντρα Α και Β αντίστοιχα και πάρουμε το σημείο Γ να είναι μια απ΄τις δύο τομές των δύο κύκλων. Ενώνοντας τα σημεία Α,Β και Γ έχουμε το ζητούμενο ισόπλευρο τρίγωνο.
Τα Στοιχεία Τα Στοιχεία είναι ουσιαστικά μια συστηματοποίηση της τότε υπάρχουσας γνώσης γεωμετρίας. Τα παλαιότερα παρόμοια εγχειρήματα ήταν σαφώς κατώτερα και για το λόγο αυτό τα περισσότερα έχουν εξαφανιστεί. Η βελτίωση που παρείχαν τα Στοιχεία αναγνωρίστηκε αμέσως. Υπάρχουν 13 συνολικά βιβλία στα Στοιχεία:Τα βιβλία I-IV και VI ασχολούνται με γεωμετρία επιπέδου. Έχουν αποδειχτεί πολλά αποτελέσματα για το επίπεδο, όπως ότι "Για κάθε τρίγωνο αν πάρουμε δύο γωνίες μαζί με οποιονδήποτε τρόπο, το αποτέλεσμα θα είναι σίγουρα μικρότερο από δύο ορθές γωνίες", ή το Πυθαγόρειο θεώρημα "Το τετράγωνο της υποτείνουσας ενός ορθογωνίου τριγώνου ισούται με το άθροισμα των τετραγώνων των δύο καθέτων πλευρών".
Τα Στοιχεία Τα βιβλία V και VII-X έχουν να κάνουν με θεωρία αριθμών, με αριθμούς που αντιμετωπίζονται γεωμετρικά μέσω της αναπαράστασης τους ως ευθύγραμμα τμήματα με διάφορα μήκη. Εισάγονται και έννοιες όπως πρώτοι αριθμοί, ρητοί και άρρητοι αριθμοί. Επίσης αποδεικνύεται και η απειρία των πρώτων αριθμών. Τέλος τα βιβλία XI-XIII μιλούν για στερεομετρία .Ένα γνωστό αποτέλεσμα είναι η εύρεση του λόγου του όγκου ενός κώνου και ενός κυλίνδρου με ίδιο ύψος και βάση που είναι ίσος με 1:3.
Αξιώματα Η ευκλείδεια γεωμετρία είναι ένα αξιωματικό σύστημα στο οποίο τα θεωρήματα προέρχονται από ένα μικρό αριθμό αξιωμάτων. Στην αρχή του πρώτου βιβλίου των Στοιχείων ο Ευκλείδης δίνει 5 αξιώματα για τη γεωμετρία του επιπέδου και σχετίζονται με τη κατασκευή: "Η κατασκευή μιας ευθείας γραμμής από ένα σημείο σε οποιοδήποτε άλλο" "Μια πεπερασμένη ευθεία μπορεί να επεκταθεί απεριόριστα" "Ένας κύκλος ορίζεται από ένα κέντρο και μια απόσταση(ακτίνα)" "Όλες οι ορθές γωνίες είναι ίσες" Το αξίωμα παραλληλίας: "Αν μια ευθεία τέμνει δύο άλλες, τότε αυτές οι δύο αν επεκταθούν επ' αόριστον θα τιμηθούν απ' την μεριά που οι εσωτερικές γωνίες που σχηματίζονται έχουν άθροισμα μικρότερο από δύο κάθετες"
Αξιώματα Τα Στοιχεία περιλαμβάνουν επίσης τις επόμενες 5 "κοινές έννοιες": Αντικείμενα που είναι ίσα με κάποιο άλλο ίδιο αντικείμενο είναι και μεταξύ τους ίσα (μεταβατική ιδιότητα ισότητας) Αν ίσα αντικείμενα προστεθούν σε ίσα, τότε τα τελικά παραμένουν ίσα(προσθετική ιδιότητα) Αν ίσα αφαιρεθούν από ίσα, τότε τα τελικά είναι επίσης ίσα(αφαιρετική ιδιότητα) Αντικείμενα που συμπίπτουν μεταξύ τους είναι ίσα Το όλο είναι μεγαλύτερο από ένα κομμάτι του