Θεωρία Σημάτων και Συστημάτων 2013

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ
Advertisements

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΧΩΡΟΣ ΚΑΤΑΣΤΑΣΗΣ.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ. Ε. Ι
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z.
Περιγραφή Σημάτων Συνεχούς Χρόνου
Πιθανότητες & Τυχαία Σήματα Συσχέτιση
ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ & MATLAB
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Laplace.
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ Laplace.
ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΣΗΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ-Z.
Δισδιάστατα Σήματα και Συστήματα #1
Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 5) 1 Τυχαία συνάρτηση Μία τυχαία συνάρτηση (ΤΣ) είναι ένας κανόνας με τον οποίο σε κάθε αποτέλεσμα ζ.
Εισαγωγή στην Ανάλυση Συστημάτων Αυτομάτου Ελέγχου:
Γ΄ κατεύθυνση Προβληματισμοί για τους ορισμούς, θεωρήματα, παραδείγματα και τις ασκήσεις του 3ου κεφαλαίου
Τομέας Γεωδαισίας και Τοπογραφίας 3ο Εξάμηνο
Η. Τζιαβός - Γ. Βέργος Σήματα και φασματικές μέθοδοι στη γεωπληροφορική 2014/2015ΑΠΘ/ΤΑΤΜ Τομέας Γεωδαισίας και Τοπογραφίας 3 ο Εξάμηνο Σήματα και Φασματικές.
Αριθμητικές Μέθοδοι Βελτιστοποίησης Θεωρία & Λογισμικό Τμήμα Πληροφορικής - Πανεπιστήμιο Ιωαννίνων Ι. Η. Λαγαρής.
Ο Μετασχηματισμός Laplace και ο Μετασχηματισμός Ζ
Ευστάθεια Συστημάτων Αυτομάτου Ελέγχου:
Η. Τζιαβός - Γ. Βέργος Σήματα και φασματικές μέθοδοι στη γεωπληροφορική 2013/2014ΑΠΘ/ΤΑΤΜ Τομέας Γεωδαισίας και Τοπογραφίας 3 ο Εξάμηνο Σήματα και Φασματικές.
Κεφάλαιο 7: O Μετασχηματισμός Laplace
Σέρρες,Ιούνιος 2009 Τίτλος: Αυτόματος έλεγχος στο Scilab: Ανάπτυξη πακέτου για εύρωστο έλεγχο. Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα Επιβλέπων Καθηγητής.
ΚΕΣ 01: Αυτόματος Έλεγχος © 2006 Nicolas Tsapatsoulis Ανάλυση Συστημάτων Αυτομάτου Ελέγχου: Διαγράμματα Nyquist & Nichols ΚΕΣ 01 – Αυτόματος Έλεγχος.
Κ. Μόδη: Γεωστατιστική και Εφαρμογές της (Κεφάλαιο 4) 1 Από κοινού κατανομή πολλών ΤΜ Ορίζεται ως από κοινού συνάρτηση κατανομής F(x 1, …, x n ) n τυχαίων.
Ανάλυση Σ.Α.Ε στο χώρο κατάστασης
Κοζαλάκης Ευστάθιος ΠΕ03
ΣΕΙΡΕΣ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER
ΑΡΙΘΜΗΤΙΚΗ ΕΠΙΛΥΣΗ ΤΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΜΕ ΜΕΡΙΚΕΣ ΠΑΡΑΓΩΓΟΥΣ Ακαδημαϊκό Έτος Πέμπτη, 25 Ιουνίου η Εβδομάδα ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ.
Βασικά Στοιχεία Ψηφιακής Επεξεργασίας Σήματος (V).
Μετασχηματισμός Fourier
Μετασχηματισμός Fourier
Π ΑΝΕΠΙΣΤΗΜΙΟ Δ ΥΤΙΚΗΣ Μ ΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Θεωρία Σημάτων και Συστημάτων 2013 Μάθημα 3 ο Δ. Γ. Τσαλικάκης.
Μετασχηματισμός Fourier Διακριτού Χρόνου Δειγματοληψία
ΚΙΝΗΜΑΤΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ ΕΙΣΑΓΩΓΗ Σκοπός της κινηματικής είναι η περιγραφή της κίνησης του ρευστού Τα αίτια που δημιούργησαν την κίνηση και η αναζήτηση των.
Σήματα και Συστήματα Σήματα και Συστήματα Διακριτού Χρόνου Μετασχηματισμός Ζ Χαροκόπειο Πανεπιστήμιο Τμήμα Πληροφορικής και Τηλεματικής Χρήστος Μιχαλακέλης,
Ενότητα 2 η Σήματα και Συστήματα. Σήματα Γενικά η πληροφορία αποτυπώνεται και μεταφέρεται με την βοήθεια των σημάτων. Ως σήμα ορίζουμε την οποιαδήποτε.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 7 η Διάλεξη Η ΜΕΘΟΔΟΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΡΙΖΩΝ  Ορισμός του γεωμετρικού τόπου ριζών Αποτελεί μια συγκεκριμένη καμπύλη,
Μεταβατική απόκριση ενός συστήματος δεύτερης τάξης Σχήμα 5.7 σελίδα 370.
Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κρήτης Τμήμα Εφηρμοσμένης Πληροφορικής και Πολυμέσων Εργαστήριο Νευρωνικών Δικτύων Slide 1 ΨΗΦΙΑΚΑ ΦΙΛΤΡΑ Προδιαγραφές.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 3η Μετασχηματισμός Fourier.
Συστήματα Αυτομάτου Ελέγχου Ι Ενότητα #4: Μαθηματική εξομοίωση συστημάτων στο επίπεδο της συχνότητας – Μετασχηματισμός Laplace και εφαρμογές σε ηλεκτρικά.
Κεφάλαιο 5 Συμπεριφορά των ΣΑΕ Πλεονεκτήματα της διαδικασίας σχεδίασης ΣΑΕ κλειστού βρόχου Συμπεριφορά των ΣΑΕ στο πεδίο του χρόνου Απόκριση ΣΑΕ σε διάφορα.
Κλασσική Μηχανική Ενότητα 2: Μονοδιάστατες Κινήσεις Βασίλειος Λουκόπουλος, Επίκουρος Καθηγητής Τμήμα Φυσικής.
Σήματα και Συστήματα 11 10η διάλεξη. Σήματα και Συστήματα 12 Εισαγωγικά (1) Έστω γραμμικό σύστημα που περιγράφεται από τη σχέση: Αν η είσοδος είναι γραμμικός.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 8η Στοχαστικά Σήματα - 1.
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II Καθ. Πέτρος Π. Γρουμπός Διάλεξη 4η Δειγματοληψία.
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι 8 η Διάλεξη ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΧΡΗΣΗΣ ΤΟΥ ΓΕΩΜΕΤΡΙΚΟΥ ΤΟΠΟΥ ΤΩΝ ΡΙΖΩΝ Το σύστημα ελέγχου.
ΜΕΘΟΔΟΣ ΑΝΑΛΥΣΗΣ ΣΥΣΤΗΜΑΤΩΝ ΣΤΟ ΠΕΔΙΟ ΤΗΣ ΣΥΧΝΟΤΗΤΑΣ
ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι
ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ II
Hλεκτρικά Κυκλώματα 4η Διάλεξη.
ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Θεωρία Σημάτων: ανάλυση στο χρονικό και στο φασματικό πεδίο Θεωρία Γραμμικών Συστημάτων Συνεχής συνέλιξη (Continuous convolution) Διακριτού.
Κλασσική Μηχανική Ενότητα 8: ΟΙ ΕΞΙΣΩΣΕΙΣ LAGRANGE
Η Έννοια της τυχαίας Διαδικασίας
Μετασχηματισμός Laplace συνέχεια
ΜΠΣ ΠΡΑΣΙΝΗ ΕΝΕΡΓΕΙΑ ΤΜΗΜΑ ΗΜ&ΤΥ
Η Έννοια της τυχαίας Διαδικασίας
ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΓΡΑΜΜΑΤΩΝ BODE ΜΕΤΡΟΥ ΚΑΙ ΦΑΣΗΣ
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Αναλυτικό πρόγραμμα διδασκαλίας του μαθήματος
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
Μετασχηματισμός Laplace και φίλτρα
Ονοματεπώνυμο Σπουδάστριας: Ευαγγελία Δάπκα
Διαφορικές εξισώσεις τάξης ανώτερης της πρώτης
ΜΑΘΗΜΑΤΙΚΑ ΙΙ Αναλυτικό πρόγραμμα διδασκαλίας του μαθήματος
Επαναληπτικές ασκήσεις
Δισδιάστατα Σήματα και Συστήματα #1
Τμήμα Μηχανικών Πληροφορικής Τ.Ε.
Διάλεξη 2: Συστήματα 1ης Τάξης
Σεραφείμ Καραμπογιάς Τι είναι σήμα;
Μεταγράφημα παρουσίασης:

Θεωρία Σημάτων και Συστημάτων 2013 ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE Μάθημα 7ο Δ.Γ. Τσαλικάκης

Μετασχηματισμός Laplace οποίες μπορεί να επιτευχθεί μετάβαση από το πεδίο του χρόνου στο πεδίο της συχνότητας. Υπάρχουν πολλές συναρτήσεις με πρακτική σπουδαιότητα για τις οποίες υπάρχει ο ML, ενώ αντίθετα ο MF δεν ορίζεται. 2. Με το ML παρέχεται η δυνατότητα μελέτης συστημάτων που δεν βρίσκονται σε αρχική κατάσταση ηρεμίας. Οι αρχικές συνθήκες ενσωματώνονται κατάλληλα στη μελέτη του συστήματος. 3. Η θεωρία γραμμικών συστημάτων εμπλουτίζεται, αλλά και απλοποιείται ταυτόχρονα, με τη χρήση του μιγαδικού πεδίου συχνότητας, την εισαγωγή των πόλων και μιγαδικών κλπ

Μετασχηματισμός Laplace (3.2) (3.3) Το s, στη γενική περίπτωση, είναι s = σ + jΩ.

Μετασχηματισμός Laplace Παρατηρούμε ότι, για σ = 0 ο αριθμός της (3.3) συμπίπτει με το μετασχηματισμό Fourier της x(t) (εάν αυτός υπάρχει). Η σχέση (3.3) γράφεται και ως: (3.4) Από την (3.4) φαίνεται ότι ο αμφίπλευρος μετασχηματισμός Laplace της x(t) μπορεί να ερμηνευτεί και ως ο μετασχηματισμός Fourier της Είναι λόγω αυτής της σχέσης με το MF που αναφερόμαστε στη μεταβλητή s του ML και ως μιγαδική συχνότητα. Διαπιστώνουμε ότι η παρουσία του παράγοντα παρέχει τη δυνατότητα σύγκλισης του ολοκληρώματος (3.4) και κατά συνέπεια ύπαρξης του μετασχηματισμού Laplace, ακόμα κι όταν ο MF της x(t) δεν υπάρχει.

Μετασχηματισμός Laplace Μια ουσιαστική διαφορά μεταξύ των δύο ορισμών είναι ότι ο μονόπλευρος ML παρέχει τη δυνατότητα μελέτης συστημάτων που δεν βρίσκονται σε αρχική κατάσταση ηρεμίας. Ισοδύναμα, παρέχει τη δυνατότητα επίλυσης γραμμικών διαφορικών εξισώσεων με σταθερούς συντελεστές και με ενσωμάτωση μη μηδενικών αρχικών συνθηκών. Επίσης, είναι πιο φυσική η χρήση του μονόπλευρου ML στη μελέτη αιτιατών συστημάτων για τα οποία ισχύει ότι η κρουστική τους απόκριση h(t) είναι ίση με το μηδέν για t < 0. Στο υπόλοιπο του μαθήματος θα ασχοληθούμε με το μονόπλευρο ML και σε ό,τι αφορά τον αμφίπλευρο θα περιοριστούμε σε ορισμένες αξιοσημείωτες διαφορές του από το μονόπλευρο.

Θεώρημα Ύπαρξης του ΜL

Για να υπάρχει ο Μετασχηματισμός Laplace μιας συνάρτησης x(t) πρέπει: διάστημα 0 ≤ t ≤ b • Η x(t) να είναι εκθετικής τάξης α για t> b Ο ML της x(t) υπάρχει για Re(s) > α

Μετασχηματισμός Laplace Στοιχειωδών Συναρτήσεων

Μετασχηματισμός Laplace Στοιχειωδών Συναρτήσεων

Μετασχηματισμός Laplace Στοιχειωδών Συναρτήσεων Η τρίτη στήλη του πίνακα καθορίζει ην περιοχή σύγκλισης του ML, δηλαδή την περιοχή του επιπέδου s στην οποία υπάρχει ο μετασχηματισμός Laplace της αντίστοιχης συνάρτησης. Για παράδειγμα, ο ML της cos(Ω0t)u(t) υπάρχει για κάθε t τέτοιο ώστε Re(s) > 0.

Μετασχηματισμός Laplace Στοιχειωδών Συναρτήσεων

Η περιοχή Σύγκλισης του Μετασχηματισμού Laplace

Η περιοχή Σύγκλισης του Μετασχηματισμού Laplace

Μιγαδικοί συζυγείς πόλοι αντιστοιχούν σε συναρτήσεις που υφίστανται Η περιοχή Σύγκλισης του Μετασχηματισμού Laplace Μιγαδικοί συζυγείς πόλοι αντιστοιχούν σε συναρτήσεις που υφίστανται ταλάντωση (περιέχουν ημιτονοειδείς όρους). Εάν, βέβαια, το πραγματικό μέρος των συζυγών πόλων είναι μηδέν (συζυγείς στο φανταστικό άξονα), τότε έχουμε συντηρούμενη ταλάντωση. Αλλιώς η ταλάντωση είναι ή εκθετικά φθίνουσα ή εκθετικά αύξουσα. Τα παραπάνω φαίνονται στο Σχήμα 3.2. Η περιοχή σύγκλισης του μετασχηματισμού Laplace μιας συνάρτησης δεν περιλαμβάνει πόλους. Αυτό είναι αποτέλεσμα μιας χρήσιμης ιδιότητας του ML σύμφωνα με την οποία ο ML X(s) της x(t) είναι αναλυτική συνάρτηση στην περιοχή σύγκλισής του.

Η περιοχή Σύγκλισης του Μετασχηματισμού Laplace Σχήμα 3.2. Σχέση μεταξύ της θέσης των πόλων στο επόμενο s και της μορφής του σήματος στο πεδίο του χρόνου. (α) Ένας πραγματικός πόλος. (β) Δύο συζυγείς φανταστικοί πόλοι.

Η περιοχή Σύγκλισης του Μετασχηματισμού Laplace

Ιδιότητες και Θεωρήματα του ΜL

Ιδιότητες και Θεωρήματα του ΜL

Ιδιότητες και Θεωρήματα του ΜL

Ιδιότητες και Θεωρήματα του ΜL

Ιδιότητες και Θεωρήματα του ΜL

Ιδιότητες και Θεωρήματα του ΜL

Θεώρημα της Αρχικής Τιμής

Θεώρημα της Τελικής Τιμής

Θεώρημα της Τελικής Τιμής

Πίνακας Ιδιοτήτων και Μετασχηματισμοί Laplace

Μετασχηματισμού Laplace Παράδειγμα Μετασχηματισμού Laplace

Άσκηση 1

Άσκηση 2

Άσκηση 3

Άσκηση 4

Άσκηση 5

Άσκηση 5 (συνέχεια)

Άσκηση 6

Άσκηση 6 (συνέχεια)