ΑΞΙΩΜΑΤΑ ΤΗΣ ΑΛΓΕΒΡΑΣ BOOLE (αξιώματα Huntington) 1. Κλειστότητα α. ως προς την πράξη + (OR) β. ως προς την πράξη  (AND) 2. Ουδέτερα.

Slides:



Advertisements
Παρόμοιες παρουσιάσεις
Ψηφιακά Κυκλώματα.
Advertisements

Συνδυαστικα κυκλωματα με MSI και LSI
Τομέας Αρχιτεκτονικής Η/Υ & Βιομηχανικών Εφαρμογών
13.1 Λογικές πύλες AND, OR, NOT, NAND, NOR
Συνδιαστικά Λογικά Κυκλώματα
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία
ΗΥ120 "ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ" ΙCs.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ (Τ. Ε. Ι
Παράσταση αριθμών «κινητής υποδιαστολής» floating point
Άλγεβρα Boole και Λογικές Πύλες
2. Άλγεβρα Boole και Λογικές Πύλες
3. Απλοποίηση Συναρτήσεων Boole
4. Συνδυαστική Λογική 4.1 Εισαγωγή
ΕΝΟΤΗΤΑ 6Η ΣΥΝΔΥΑΣΤΙΚΑ ΚΥΚΛΩΜΑΤΑ ΤΗΣ ΤΥΠΙΚΗΣ ΛΟΓΙΚΗΣ Β΄
ΗΥ120 "ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ" ΙCs.
Προηγμένες Υπηρεσίες Τηλεκπαίδευσης στο Τ.Ε.Ι. Σερρών
ΕΝΟΤΗΤΑ 11 Η ΠΡΟΓΡΑΜΜΑΤΙΖΟΜΕΝΟΙ ΛΟΓΙΚΟΙ ΠΙΝΑΚΕΣ (PROGRAMMABLE LOGIC ARRAYS)  Οι λογικοί Πίνακες ως γεννήτριες συναρτήσεων  Επίπεδα AND-OR και OR-AND.
ΗΥ120 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ Συναρτησεις Boole.
ΗΜΥ 210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2009
ΗΜΥ 100: Εισαγωγή στην Τεχνολογία Διάλεξη 17 Εισαγωγή στα Ψηφιακά Συστήματα: Μέρος Γ TΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ.
Συγχρονα Ακολουθιακα Κυκλωματα Flip-Flops Καταχωρητες
Οι λογικές πράξεις και οι λογικές πύλες
Λογικές πύλες Λογικές συναρτήσεις
Υλοποίηση λογικών πυλών με τρανζίστορ MOS
ΗΜΥ 100: Εισαγωγή στην Τεχνολογία Διάλεξη 16 Εισαγωγή στα Ψηφιακά Συστήματα: Μέρος B TΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
ΗΜΥ 100 Εισαγωγή στην Τεχνολογία ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ.
Ψηφιακή Σχεδίαση Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
1-1 Πανεπιστήμιο Θεσσαλίας Τμήμα Πληροφορικής Λογική Σχεδίαση Ψηφιακών Συστημάτων Διδάσκων: Γιώργος Σταμούλης.
Ψηφιακή Σχεδίαση Εργαστήριο Τετάρτη 14/10/2015. Μέρος 1ο Ελαχιστόροι-Μεγιστόροι.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 8: Ολοκληρωμένα κυκλώματα – Συνδυαστική λογική – Πολυπλέκτες – Κωδικοποιητές - Αποκωδικοποιητές Δρ Κώστας Χαϊκάλης ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ.
{ Ψηφιακή Σχεδίαση εργαστήριο Γιάννης Νικολουδάκης.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ 1 Διάλεξη 2: Άλγεβρα Boole - Λογικές πύλες Δρ Κώστας Χαϊκάλης.
Τέταρτο μάθημα Ψηφιακά Ηλεκτρονικά.
Έβδομο μάθημα Ψηφιακά Ηλεκτρονικά.
Τρίτο μάθημα Ψηφιακά Ηλεκτρονικά.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 4: Απλοποίηση (βελτιστοποίηση) λογικών συναρτήσεων με την μέθοδο του χάρτη Karnaugh (1ο μέρος) και υλοποίηση με πύλες NAND -
Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής
Όγδοο μάθημα Ψηφιακά Ηλεκτρονικά.
Συστήματα CAD Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών
Δυαδική λογική ΚΑΙ (AND) H (ΟR) ΟΧΙ (NOT)
Έκτο μάθημα Ψηφιακά Ηλεκτρονικά.
Πέμπτο μάθημα Ψηφιακά Ηλεκτρονικά.
ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Διάλεξη 5: Απλοποίηση (βελτιστοποίηση) λογικών συναρτήσεων με την μέθοδο του χάρτη Karnaugh (2ο μέρος) Δρ Κώστας Χαϊκάλης ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ.
Ψηφιακή Σχεδίαση Εργαστήριο Τετάρτη 9/12/2015.
Διάλεξη 9: Συνδυαστική λογική - Ασκήσεις Δρ Κώστας Χαϊκάλης
Εισαγωγή στους Η/Υ Ενότητα 11: Αλγεβρικές πράξεις στους Η/Υ
Ψηφιακή Σχεδίαση Εργαστήριο Τετάρτη 14/10/2015.
Ψηφιακή Σχεδίαση εργαστήριο
ΣΤΟΧΟΣ : Ο μαθητής να μπορεί να
“Ψηφιακός έλεγχος και μέτρηση της στάθμης υγρού σε δεξαμενή"
ΙΔΙΟΤΗΤΕΣ ΤΩΝ ΠΡΑΞΕΩΝ Stomikrocosmotistaxismas.blogspot.gr.
Διάλεξη 3: Αλγεβρα Boole - Ασκήσεις Δρ Κώστας Χαϊκάλης
Ψηφιακή Σχεδίαση εργαστήριο
Χειμερινό εξάμηνο 2017 Πέμπτη διάλεξη
Χειμερινό εξάμηνο 2017 Τέταρτη διάλεξη
Λογικές πύλες και υλοποίηση άλγεβρας Boole ΑΡΒΑΝΙΤΗΣ ΚΩΝΣΤΑΝΤΙΝΟΣ(ΣΥΝΕΡΓΑΤΕΣ):ΔΗΜΗΤΡΙΟΣ ΔΑΒΟΣ- ΜΑΡΙΑ ΕΙΡΗΝΗ KAΛΙΑΤΣΗ-ΦΡΑΤΖΕΣΚΟΣ ΒΟΛΤΕΡΙΝΟΣ… ΕΠΠΑΙΚ ΑΡΓΟΥΣ.
Ψηφιακή Σχεδίαση εργαστήριο
Τ.Ε.Ι. Κρήτης Σχολή Τεχνολογικών Εφαρμογών Τμ. Μηχανικών Πληροφορικής
Λογική Σχεδίαση Ψηφιακών Συστημάτων
Математичка логика Основни појмови, дефиниција исказа, основне логичке операције над исказима.
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο 2005
ΗΜΥ-210: Σχεδιασμός Ψηφιακών Συστημάτων Χειμερινό Εξάμηνο 2008
ΗΜΥ-210: Λογικός Σχεδιασμός Εαρινό Εξάμηνο 2005
Εργαστήριο Ψηφιακών Ηλεκτρονικών
ΔΗΜΟΤΙΚΟ ΣΧΟΛΕΙΟ ΜΕΝΙΔΙΟΥ
Υλοποιήσεις λογικών συναρτήσεων
Μεταγράφημα παρουσίασης:

ΑΞΙΩΜΑΤΑ ΤΗΣ ΑΛΓΕΒΡΑΣ BOOLE (αξιώματα Huntington) 1. Κλειστότητα α. ως προς την πράξη + (OR) β. ως προς την πράξη  (AND) 2. Ουδέτερα στοιχεία πράξεων α. x+0=0+x=x β. x1=1x=x 3. Αντιμεταθετική ιδιότητα α. x+y=y+x β. xy=yx 4. Επιμεριστική ιδιότητα α. x(y+z)=xy+xz β. x+(yz)=(x+y)(x+z) 5. Μοναδικό Συμπλήρωμα (NOT) α. x+x'=1 β. xx'=0 Δρ. ΑΣΗΜΑΚΗΣ ΝΙΚΟΛΑΟΣ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΘΕΩΡΗΜΑΤΑ ΤΗΣ ΑΛΓΕΒΡΑΣ BOOLE 1. α. x+x=x β. xx=x 2. α. x+1=1 β. x0=0 3. (x')'=x 4. Προσεταιριστική ιδιότητα α. x+y+z=x+(y+z)=(x+y)+z β. xyz=x(yz)=(xy)z 5. Θεώρημα απορρόφησης α. x+xy=x β. x(x+y)=x 6. Θεώρημα De Morgan α. (x+y)'=x'.y‘ β. (x.y)'=x'+y'

ΣΥΜΒΟΛΑ ΤΩΝ ΠΥΛΩΝ NOT, AND ΚΑΙ OR

ΠΙΝΑΚΕΣ ΑΛΗΘΕΙΑΣ ΤΩΝ ΠΥΛΩΝ NOT, AND ΚΑΙ OR

ΣΥΜΒΟΛΑ ΤΩΝ ΠΥΛΩΝ NAND ΚΑΙ NOR

ΠΥΛΕΣ AND ΚΑΙ OR ΠΟΛΛΑΠΛΩΝ ΕΙΣΟΔΩΝ xyz=x(yz)=(xy)z

ΠΙΝΑΚΑΣ ΑΛΗΘΕΙΑΣ ΠΥΛΗΣ NOR ΤΕΣΣΑΡΩΝ (4) ΕΙΣΟΔΩΝ Δρ. ΑΣΗΜΑΚΗΣ ΝΙΚΟΛΑΟΣ ΛΟΓΙΚΗ ΣΧΕΔΙΑΣΗ

ΤΟ ΟΛΟΚΛΗΡΩΜΕΝΟ 7400 Τα chip της standard σειράς 74 της οικογένειας TTL έχουν ονομασία που αρχίζει από 74 και ακολουθείται από κατάληξη που προσδιορίζει τον τύπο της σειράς. Το chip 7400 που περιέχει τέσσερις πύλες NAND δυο εισόδων είναι το βασικό κύκλωμα της οικογένειας TTL.  

ΟΙ ΑΚΡΟΔΕΚΤΕΣ ΤΟΥ 7400 Το chip τροφοδοτείται με τάση Vcc (υψηλή τάση - λογικό “1”) στην περιοχή τιμών 2.4V-5V με τυπική τιμή 3.5V και γειώνεται GND (χαμηλή τάση - λογικό “0”) στην περιοχή τιμών 0V-0.4V με τυπική τιμή 0.2V.  

ΤΑ ΟΛΟΚΛΗΡΩΜΕΝΑ ΤΗΣ ΣΕΙΡΑΣ 74

ΟΙΚΟΥΜΕΝΙΚΕΣ ΠΥΛΕΣ NAND, NOR

Θεώρημα De Morgan α. (x+y)'=x'.y' β. (x.y)'=x'+y' ΓΕΝΙΚΕΥΣΗ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ (Χ1 + Χ2 + ... + Χn)' = Χ1' • Χ2' • … • Χn' (Χ1 • Χ2 • … • Χn)' = Χ'1 + Χ'2 + ... + Χ'n

f(x,y,z)=xy+y'z'+xy'z' f(x,y,z)=xy+(y+z)'+x(y+z)' Α) Πίνακας Αληθείας Β) Λογικό Κύκλωμα χρησιμοποιώντας NOR, OR,AND f(x,y,z)=xy+(y+z)'+x(y+z)'

Σύμφωνα με το θεώρημα De Morgan η συνάρτηση γίνεται: Z=((A'B)' C') ' Οι πύλες NAND και NOR δύο εισόδων ονομάζονται οικουμενικές πύλες (universal gates) γιατί κάθε συνδυαστικό κύκλωμα μπορεί να υλοποιηθεί μόνο με πύλες NAND δύο εισόδων ή μόνο με πύλες NOR δύο εισόδων. Κάθε πύλη NOT και AND και OR δύο εισόδων μπορεί να αντικατασταθεί από ένα ισοδύναμο κύκλωμα με αποκλειστική χρησιμοποίηση είτε πυλών NAND είτε πυλών NOR δύο εισόδων Z=(A'B+C)=((A'B+C) ') '  Σύμφωνα με το θεώρημα De Morgan η συνάρτηση γίνεται: Z=((A'B)' C') '

Z=(A’B+C)=[[(A+B')'+(C)] ' ]'

([A+B]+[C+D])’ ([A•B] •[C•D])’ Οι πύλες AND και OR πολλαπλών εισόδων μπορούν να υλοποιηθούν συνδέοντας πολλές αντίστοιχες πύλες δύο εισόδων, γιατί ισχύει η προσεταιριστική ιδιότητα: x+y+z=x+(y+z)=(x+y)+z xyz=x(yz)=(xy)z ([A+B]+[C+D])’ ([A•B] •[C•D])’

 Η προσεταιριστική ιδιότητα δεν ισχύει για την πύλη NAND Y1=(ABC)’ Y2=((AB)’C)’ Να επιβεβαιώσετε ότι Y1Y2 δηλαδή ότι η προσεταιριστική ιδιότητα δεν ισχύει για την πύλη NAND.   Η προσεταιριστική ιδιότητα δεν ισχύει για την πύλη NOR Να σχεδιάσετε τα κυκλώματα Y1=(A+B+C)’ Y2=((A+B)’+C)’

ΚΑΝΟΝΙΚΕΣ ΜΟΡΦΕΣ Κάθε λογική συνάρτηση μπορεί να εκφρασθεί ως: άθροισμα ελάχιστων όρων (ΣΠ μορφή) και γινόμενο μέγιστων όρων (ΠΣ μορφή) Αυτές οι δύο μορφές έκφρασης των συναρτήσεων ονομάζονται Κανονικές Μορφές.

Ελάχιστοι όροι μίας λογικής συνάρτησης ονομάζονται όλα τα γινόμενα όλων των όρων της συνάρτησης, όπου ο κάθε όρος (μεταβλητή) εμφανίζεται στην κανονική (αν έχει τιμή “1”) ή στην συμπληρωματική του μορφή (αν έχει τιμή “0”).

Μέγιστοι όροι μίας λογικής συνάρτησης ονομάζονται όλα τα αθροίσματα όλων των όρων της συνάρτησης, όπου ο κάθε όρος (μεταβλητή) εμφανίζεται στην κανονική (αν έχει τιμή “0”) ή στην συμπληρωματική του μορφή (αν έχει τιμή “1”). Μία λογική συνάρτηση n μεταβλητών έχει 2n ελάχιστους όρους και 2n μέγιστους όρους. Οι ελάχιστοι όροι συμβολίζονται με mi και οι μέγιστοι όροι συμβολίζονται με Mi όπου i=0,1,...,2n-1. Προφανώς ισχύει ότι mi'=Mi όπου i=0,1,...,2n-1. Κάθε λογική συνάρτηση μπορεί να εκφρασθεί ως άθροισμα ελάχιστων όρων (ΣΠ μορφή) και ως γινόμενο μέγιστων όρων (ΠΣ μορφή). Αυτές οι δύο μορφές έκφρασης των συναρτήσεων ονομάζονται Κανονικές Μορφές.

ΠΑΡΑΔΕΙΓΜΑ ΚΑΝΟΝΙΚΩΝ ΜΟΡΦΩΝ Η συνάρτηση Y=Y(x,y,z) τριών μεταβλητών x, y και z όπου x είναι το περισσότερο σημαντικό ψηφίο (Most Significant Bit - MSB) και z είναι το λιγότερο σημαντικό ψηφίο (Least Significant Bit - LSB) έχει οκτώ ελάχιστους όρους και οκτώ μέγιστους όρους (23=8). Ο πίνακας αληθείας της συνάρτησης είναι: ΣΠ μορφή: Y=x'y'z+xy'z'+xyz=Σ(1,4,7) ΠΣ μορφή: Y=(x+y+z) (x+y'+z) (x+y'+z') (x'+y+z') (x'+y'+z)=Π(0,2,3,5,6)